检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨倩兰 宋丽梅[1] 黄浩珍 朱新军[1] YANG Qianlan;SONG Limei;HUANG Haozhen;ZHU Xinjun(Key Laboratory of Intelligent Control of Electrical Equipment,School of Control Science and Engineering,Tianjin Polytechnic University,Tianjin 300387,China)
机构地区:[1]天津工业大学控制科学与工程学院天津市电气装备智能控制重点实验室,天津300387
出 处:《计算机集成制造系统》2022年第7期2242-2249,共8页Computer Integrated Manufacturing Systems
基 金:国家自然科学基金资助项目(61905178);天津大学精密测试技术及仪器国家重点实验室开放基金资助项目(PIL1603);天津市高等学校创新团队培养计划资助项目(TD13-5036)。
摘 要:图像匹配是计算机视觉应用研究的主要内容。针对ORB(Oriented FAST and Rotated BRIEF)图像匹配方法不具备尺度不变性和匹配精度低的问题,提出一种基于改进ORB算法的图像匹配方法。在特征点检测阶段,ORB和SURF(Speeded Up Robust Feature)同时检测特征点,首先采用oFAST(oriented-FAST)与SURF算法检测左右图像特征点,然后使用rBRIEF(rotation-aware BRIEF)描述子描述特征点;在立体匹配阶段,采用Hamming距离对特征点进行粗匹配的基础上,引入极线约束筛选特征点并进行精匹配,减小匹配搜索范围,加快匹配速度,提高匹配准确率。实验结果表明,所提改进ORB算法点对数平均值是SURF算法的1.5倍左右,匹配速度平均值比SURF算法提高了22%,准确率比SURF算法提高了2倍,比ORB算法提高1.7倍,从而证明所提改进ORB算法,具有匹配点数多、速度快、准确率高的特点,且具有尺度不变性。所提方法可应用于目标识别、目标跟踪、三维重建、缺陷检测等领域。Image matching is the main content of computer vision application research.Aiming at the problems of Oriented fast and Rotated BRIEF(ORB)image matching method with no scale invariance and low matching accuracy,an image matching method based on improved ORB algorithm was proposed.In the feature point detection stage,the feature points were detected by ORB and SURF at the same time.The left and right image feature points were detected by oFAST and SURF algorithm,and then the feature points were described by rBRIEF descriptor.In the stereo matching stage,based on the rough matching of Hamming distance on the feature points,the epipolar constraint was introduced to screen the feature points and make fine matching,so as to reduce the matching search range and speed up the matching speed to improve the matching accuracy.The experimental results showed that the average point logarithm of the improved ORB algorithm was about 1.5 times of SURF algorithm,the average matching speed was 22%higher than SURF algorithm,the accuracy rate was 2 times higher than SURF algorithm and 1.7 times higher than ORB algorithm.In conclusion,the improved ORB algorithm had the characteristics of more matching points,faster speed,higher accuracy,and scale invariance.It could be used in target recognition,target tracking,3D reconstruction,defect detection and other fields.
关 键 词:改进ORB算法 特征点检测 特征点描述 外极线约束 图像匹配
分 类 号:TP319[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.245.229