检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王德志 梁俊艳[2] Wang Dezhi;Liang Junyan(Department of Computer Engineering,North China Institute of Science and Technology,Langfang 065201,Hebei,China;Library,North China Institute of Science and Technology,Langfang 065201,Hebei,China)
机构地区:[1]华北科技学院计算机学院,河北廊坊065201 [2]华北科技学院图书馆,河北廊坊065201
出 处:《计算机应用与软件》2022年第7期188-194,共7页Computer Applications and Software
基 金:国家重点研发计划项目(2018YFC0808306);河北省物联网监控工程技术研究中心项目(3142018055)。
摘 要:针对通用词向量模型在文本多目标分类中的不同性能评价比较问题,基于微博灾害数据集,设计四种多目标分类神经网络模型。通过实验,对比分析同一词向量模型在不同分类模型中的性能差异;分析不同词向量模型在分类模型中的性能特点;对模型训练时间和测试准确性进行分析。实验结果表明,Word2vec模型在CNN和LSTM网络模型中针对微博灾害数据准确率最高。Aiming at the problem of different performance evaluation and comparison of general word vector model in text multi-objective classification, we design four neural network models with multi-objective classification based on Weibo disaster data set. Through experiments, we compared and analyzed the performance differences of the same word vector model in different classification models. We analyzed the performance characteristics of different word vector models in classification models. And then the training time and testing accuracy of the model were analyzed. The experimental results show that Word2 vec model has the highest accuracy for microblog disaster data in CNN and LSTM network models.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.86.123