检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张艳辉 吴江华 孙保存 Yanhui Zhang;Jianghua Wu;Baocun Sun(Department of Pathology,Tianjin Medical University Cancer Institute&Hospital,National Clinical Research Center for Cancer,Tianjin Key Laboratory of Cancer Prevention and Therapy,Tianjin's Clinical Research Center for Cancer,Tianjin 300060,China;Department of Pathology,Tianjin Medical University,Tianjin 300070,China)
机构地区:[1]天津医科大学肿瘤医院病理科,国家恶性肿瘤临床医学研究中心,天津市“肿瘤防治”重点实验室,天津市恶性肿瘤临床医学研究中心,天津市300060 [2]天津医科大学病理教研室
出 处:《中国肿瘤临床》2022年第14期743-747,共5页Chinese Journal of Clinical Oncology
基 金:国家自然科学基金青年项目(编号:82003155)资助。
摘 要:肿瘤个体化治疗的进展对肿瘤组织病理标记物的精确诊断提出了更高的要求。数字病理(digital pathology,DP)的发展为人工智能(artificial intelligence,AI)辅助诊断在肿瘤组织病理图像分析中的应用提供了基础。基于卷积神经网络的深度学习(deep learning,DL)算法能够将DP图像与计算机分析技术相结合,有望成为定量评价肿瘤组织生物标志物的重要工具。本文概述了AI在组织病理学中的发展,并以目前研究相对广泛且与临床诊疗密切相关的分子病理指标Her-2、Ki-67及PD-L1的图像分析为具体案例,重点阐述了当前AI在肿瘤病理标志物分析中的研究进展。AI辅助的肿瘤病理诊断具有客观性强及可重复性高等优点,能够实现肿瘤组织标志物诊断的定量分析,从而克服病理医生人工判读的挑战,提高病理诊断的精确性。通过计算机工具构建肿瘤组织标志物的AI判读模式,是构建未来肿瘤智能诊疗体系的重要环节。The progress of tumor individualized treatment puts forward higher requirements for the accurate diagnosis of tumor tissue-based specific biomarkers.The development of digital pathology provides a basis for the application of artificial intelligence(AI)-assisted diagnostic tools in tumor pathological image analysis.The deep learning algorithm based on a convolutional neural network combines digital pathological images with computer analysis technology,which is an important tool for quantitative evaluation of tumor-tissue biomarkers.This review summarizes the development of AI in histopathology and focuses on the progress of image analysis of molecular biomarkers such as Her-2,Ki-67,and PD-L1.These molecular biomarkers are specificly supported by extensive research and closely related to clinical diagnosis and treatment.Studies have shown that AI-assisted tumor diagnosis has the advantages of strong objectivity and high repeatability.It can obtain the quantitative results of the tumor-tissue biomarkers to overcome the challenges of manual interpretation and improve the accuracy of diagnosis of pathologists.The development of AI-based analysis tools of tumor-tissue biomarkers is an important method to build intelligent and accurate tumor diagnosis and treatment systems of the future.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.177.255