检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡瑞初[1] 吴逢竹 李梓健 Cai Ruichu;Wu Fengzhu;Li Zijian(School of Computer Science,Guangdong University of Technology,Guangzhou 510006,China)
出 处:《计算机应用研究》2022年第8期2333-2339,共7页Application Research of Computers
基 金:国家自然科学基金资助项目(61876043);国家优秀青年科学基金资助项目(6212200101);广州市科技计划资助项目(201902010058)。
摘 要:推荐系统在各方各面得到充分的应用,时刻影响着日常生活。要训练出一个良好的推荐系统往往需要大量的用户-商品交互数据,但是实际情况下获得的数据往往是十分稀疏的,这往往会使得训练出来的模型过拟合,最后难以获得理想的推荐效果。为了解决这个问题,跨领域推荐系统应运而生。目前大部分的跨领域推荐系统工作都是借鉴传统领域自适应的方法,使用基于特征对齐或者对抗学习的思想将领域不变用户兴趣从有丰富数据的源域迁移到稀疏的目标域上,例如豆瓣电影迁移到豆瓣图书。但是由于不同推荐平台的网络结构有所不同,现有方法暴力提取的领域不变的语义信息容易和结构信息耦合,导致错配现象。而且,现有方法忽略了图数据本身存在的噪声,导致实验效果进一步受到了影响。为了解决这个问题,首先引入了图数据的因果数据生成过程,通过领域特征隐变量和语义特征隐变量、噪声隐变量解耦出来,通过使用每个节点的语义隐变量进行推荐,从而获得领域不变的推荐效果。在多个公开数据集上验证了该方法,并取得了目前最好的实验效果。Recommendation systems are widely used everywhere and have a great influence on daily life.Aiming to train an ideal recommendation system,a massive of use-item interactive pairs should be provided.However,the dataset obtained is usually sparse,which might result in an over-fitting model and be hard to obtain the satisfying performance.In order to address this problem,the cross-domain recommendation is raised.Most of the existing methods on cross-domain recommendation systems borrow the ideas of the conventional unsupervised domain adaptation,which employ the feature alignment or adversarial training methods.Hence they can transfer the domain-invariant interests of users from the source to the target domains,e.g.,from the Douban Movies to the Douban Books.However,since the network structures vary with different recommendation platforms,the existing methods on cross-domain recommendation systems straight forwardly extract the domain-invariant representation may entangle the structure information,which may result in the false alignment phenomenon.Furthermore,the previous efforts ignore the noise information behind the graph data,which further degenerate the experimental performance.In order to address the aforementioned problems,this paper brought the causal generation process of graph data into the cross-domain recommendation systems,it used the semantic latent variables of each node to calculate the relationships between users and items via disentangling the semantic latent variables,domain latent variables and noise latent variables.Experiments show that the proposed method yields state-of-the-art performance on several cross-domain recommendation system benchmark datasets.
关 键 词:解耦 图神经网络 领域自适应 推荐系统 因果数据生成过程
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43