检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ihsan Jasim Hussein M.A.Burhanuddin Mazin Abed Mohammed Mohamed Elhoseny Begonya Garcia-Zapirain Marwah Suliman Maashi Mashael S.Maashi
机构地区:[1]BIOCORE Research Group,Universiti Teknikal Malaysia Melaka,Melaka,76100,Malaysia [2]Director of UTeM International Centre,BIOCORE Research Group,Universiti Teknikal Malaysia Melaka,Melaka,76100,Malaysia [3]College of Computer Science and Information Technology,University of Anbar,Ramadi,31001,Iraq [4]Department of Computer Science,College of Computer Information Technology,American University in the Emirates,503000,United Arab Emirates [5]eVIDA Laboratory,University of Deusto,Bilbao,48007,Spain [6]Medical Laboratory Science Department,King Abdulaziz University,Jeddah,21589,Saudi Arabia [7]Software Engineering Department,College of Computer and Information Sciences,King Saud University,Riyadh,11451,Saudi Arabia
出 处:《Computers, Materials & Continua》2021年第3期3161-3182,共22页计算机、材料和连续体(英文)
摘 要:One of the most complex tasks for computer-aided diagnosis(Intelligent decision support system)is the segmentation of lesions.Thus,this study proposes a new fully automated method for the segmentation of ovarian and breast ultrasound images.The main contributions of this research is the development of a novel Viola–James model capable of segmenting the ultrasound images of breast and ovarian cancer cases.In addition,proposed an approach that can efficiently generate region-of-interest(ROI)and new features that can be used in characterizing lesion boundaries.This study uses two databases in training and testing the proposed segmentation approach.The breast cancer database contains 250 images,while that of the ovarian tumor has 100 images obtained from several hospitals in Iraq.Results of the experiments showed that the proposed approach demonstrates better performance compared with those of other segmentation methods used for segmenting breast and ovarian ultrasound images.The segmentation result of the proposed system compared with the other existing techniques in the breast cancer data set was 78.8%.By contrast,the segmentation result of the proposed system in the ovarian tumor data set was 79.2%.In the classification results,we achieved 95.43%accuracy,92.20%sensitivity,and 97.5%specificity when we used the breast cancer data set.For the ovarian tumor data set,we achieved 94.84%accuracy,96.96%sensitivity,and 90.32%specificity.
关 键 词:Viola-Jones model breast cancer segmentation ovarian tumor ovarian tumor segmentation breast cancer ultrasound images active contour cascade model
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7