检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵迪 王呈[1] Zhao Di;Wang Cheng(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)
出 处:《电子测量与仪器学报》2022年第5期104-112,共9页Journal of Electronic Measurement and Instrumentation
基 金:近地面探测技术重点实验室预研基金(6142414180104);轨道交通运行控制系统国家工程技术研究中心开放课题(NERC2019K001)。
摘 要:针对传统运维知识库不具备图像故障现象识别能力,无法处理非结构化数据的问题,基于深度学习的故障分类网络,提出改进胶囊网络特征提取结构的Caps-DRFN算法,实现机电设备运维图像自动分类。首先,针对运维图像存在的多噪声问题,引入深度残差收缩网络(deep residual shrinkage networks,DRSN)提高模型在含噪声数据上的特征提取效果。然后,针对实际拍摄的运维图像多尺度问题,结合FPN(feature pyramid networks)算法,实现图像多尺度特征融合提高模型分类准确率。最后,利用胶囊结构构建向量神经元,通过动态路由的特征传递方式,得到分类结构数字胶囊,实现机电设备故障分类。实验结果表明,相较于传统胶囊网络算法,提出的基于特征融合的Caps-DRFN算法准确率提高了15%且有着更强的鲁棒性。Traditional operation and maintenance knowledge base does not have the ability to identify the failure phenomena in the image.Therefore,the knowledge base cannot handle the problem of unstructured data.To tackle this issue,based on fault classification networks in deep learning,an improved capsule network feature extraction structure based Caps-DRFN algorithm is proposed,which can realize automatic classification of operation and maintenance images of electromechanical equipment.Firstly,aiming at the multi-noise problem of operation and maintenance images,the deep residual shrinkage networks(DRSN)are introduced to improve the feature extraction performance of the model on noisy data.Subsequently,for the multi-scale problem of actual shooting operation and maintenance images,through the combination of the feature pyramid networks(FPN)algorithm,the Caps-DRFN realizes image multi-scale feature fusion and improves the accuracy of model classification.Finally,the vector neuron is constructed by using the capsule structure,and the digital capsule of the classification structure is obtained through the feature transmission method of dynamic routing.The model realizes the fault classification of electromechanical equipment.The experimental results show that compared with the traditional capsule network algorithm,the accuracy of the proposed Caps-DRFN algorithm based on feature fusion is increased by 15%and it is more robust.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.251.232