检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘淑芬[1] 张海翔[2] 李占东[2] 冯加志 吕云舒 LIU Shufen;ZHANG Haixiang;LI Zhandong;FENG Jiazhi;LYU Yunshu(National Demenstration Center for Experimental Petroleum Engineering and Geology Education,Northeast Petroleum University,Daqing 163318,China;School of Offshore Oil and Gas Engineering,Northeast Petroleum University,Daqing 163318,China)
机构地区:[1]东北石油大学石油工程与地质国家级教学示范中心,黑龙江大庆163318 [2]东北石油大学海洋油气工程学院,黑龙江大庆163318
出 处:《实验技术与管理》2022年第7期181-186,195,共7页Experimental Technology and Management
基 金:国家自然科学基金项目(41804133);教育部产学合作协同育人课题(KLKJ-2021-05-4-59-149,202102468012);黑龙江省高等教育教学改革项目(SJGY20210114,SJGY20210136);东北石油大学教学改革研究项目(DYJG2021007)。
摘 要:为了克服地震属性预测结果不确定性问题,设计了地震属性融合定量储层预测实验。从储层特征分析入手,采用地震正演模拟确定反应储层特征的敏感地震属性,以单属性和砂岩厚度相关度完成属性优选,通过属性加权融合处理,最终实现定量储层预测。实验结果表明,基于储层特征地震正演分析的属性加权融合方法,对储层的预测精度明显提高。该实验设计加深了学生对勘查技术与工程专业知识的理解,有助于提升他们的工程实践能力。In order to overcome the uncertainty of seismic attribute prediction results,a quantitative reservoir prediction experiment based on seismic attribute fusion is designed.Starting with the analysis of reservoir characteristics,the sensitive seismic attributes reflecting reservoir characteristics are determined by seismic forward modeling,the attribute optimization is completed by single attribute and sandstone thickness correlation analysis,and the quantitative reservoir prediction is finally realized through attribute weighted fusion processing.The experimental results show that the attribute weighted fusion method based on seismic forward modeling analysis of reservoir characteristics can significantly improve the accuracy of reservoir prediction.The experimental design deepens students’understanding of exploration technology and engineering expertise,and helps to improve their engineering practice ability.
分 类 号:P624[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30