检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张素霞[1] 刘艳娜 徐霞霞 ZHANG Suxia;LIU Yanna;XU Xiaxia(School of Science,Xi'an University of Technology,Xi'an 710048)
出 处:《工程数学学报》2022年第3期463-476,共14页Chinese Journal of Engineering Mathematics
基 金:国家自然科学基金(11801439);陕西省自然科学基金(2022JM-038)。
摘 要:考虑到年龄在一些传染病流行过程中的重要影响,建立了一个具有一般传染率的SIRS年龄结构仓室模型。通过将模型改写为抽象柯西问题并利用Hille-Yosida算子相关定理,分析了模型的动力学性态,讨论了平衡点的稳定性以及平衡点失稳时产生Hopf分支的条件。结果表明,当基本再生数小于1时,免疫年龄不影响无病平衡点的全局稳定性;当基本再生数大于1时,免疫年龄扰动导致地方病平衡点的稳定性改变,从而产生Hopf分支。同时,数值模拟验证了理论结果并显示了免疫年龄对模型动力学性态的影响。Considering the impact of age in the transmission of infectious diseases, we present an age-structured model with SIRS type and general incidence function. By reformulating the model as an abstract Cauchy problem and applying theorems related with the Hille-Yosida operator, we investigated the dynamic properties, including stability of equilibria and the condition for Hopf bifurcation due to the destabilization of endemic equilibrium. The results reveal that,if the basic reproductive number is less than 1, the infection-free equilibrium is globally stable,without being influenced by the immune age. Conversely, if the basic reproductive number is larger than 1, the endemic equilibrium may be destabilized by the perturbation of the immune age and a Hopf bifurcation can occur. Meanwhile, numerical simulations are conducted to illustrate the theoretical results and to show the influence of the immune age on the dynamical behaviors of the model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.3.134