检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:臧永盛 周冬明[1] 王长城 夏伟代 ZANG Yong-sheng;ZHOU Dong-ming;WANG Chang-cheng;XIA Wei-dai(School of Information Science and Engineering,Yunnan University,Kunming 650504,China)
出 处:《计算机工程与设计》2022年第8期2275-2283,共9页Computer Engineering and Design
基 金:国家自然科学基金项目(62066047、61365001、61463052)。
摘 要:目前在多聚焦领域,大部分基于监督学习的深度模型都需要制作带标签的大规模数据集来训练网络,而制作数据集则需要花费很大的成本。为此,提出一种基于无监督学习的深度模型来实现准确和有效的多聚焦图像融合。通过无监督的方式在公共数据集上训练引入双重注意力机制的编码-解码模型,提取源图像的深层特征;利用改进的拉普拉斯能量和对深层特征进行聚焦检测得到决策图;根据决策图得到融合图像。实验结果表明,所提方法与14种先进算法相比,在主观视觉方面保有更多的图像细节,在7个客观指标中,有6个指标实现了最优结果。Currently in the field of multi-focus image fusion,most deep models based on supervised learning require the production of large-scale datasets with labels to train the network,which is costly to be produced.For this reason,an unsupervised learning-based deep model was proposed to achieve accurate and effective multi-focused image fusion.An encoding-decoding model introducing a dual attention mechanism was trained on a public dataset by unsupervised learning strategy to extract deep features of the source images.The decision map was obtained using the improved Laplace energy and the focused detection of the deep features.The fused image was obtained based on the decision map.Experimental results show that the proposed method not only retains more image details in subjective vision,but achieves optimal results in 6 out of 7 objective metrics compared with 14 advanced algorithms.
关 键 词:卷积神经网络 编解码 监督学习 无监督学习 决策图
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166