检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邵丹 张瑶 张孟媛 康殿巨[2] 魏荣杰 杨长虹[2] SHAO Dan;ZHANG Yao;ZHANG Meng-yuan;KANG Dian-ju;WEI Rong-jie;YANG Chang-hong(Yaan Center for Disease Control and prevention,Yaan 625000,Sichuan Province,China;Sichuan Center for Disease Control and prevention,Chengdu 610041,Sichuan Province,China;Sichuan Field Epidemiology Training Program Issue-4(SCFETP-4))
机构地区:[1]雅安市疾病预防控制中心,四川雅安625000 [2]四川省疾病预防控制中心,成都610041 [3]四川省现场流行病学培训第4期(SCFETP-4)
出 处:《预防医学情报杂志》2022年第7期891-898,共8页Journal of Preventive Medicine Information
摘 要:目的通过分析2011—2020年雅安市流行性腮腺炎发病时空特征,为流行性腮腺炎防控工作提供科学依据。方法运用软件构建年发病率专题地图和月发病数ARIMA模型,分析雅安市流行性腮腺炎时空流行病学特征。结果空间分布上无明显聚集;分月发病情况整体上呈现春末夏初(4-7月)和冬春初(11-次年1月)两个季节高峰,以春末夏初为主;通过识别构建月发病数ARIMA(2,1,1)(1,1,0)12模型为最优模型,预测2021年整体发病水平较2020年有所下降。结论ARIMA模型能够较好的对雅安市流行性腮腺炎发病数进行拟合和短期预测;流行性腮腺炎的时空分布特征及其短期预测能为流行性腮腺炎风险预测和科学防控提供依据。Objective To analyze the spatiotemporal characteristics of mumps incidence in Yaan City from 2011 to 2020 so as to provide a scientific basis for the prevention and control of mumps.Methods The theme map of annual incidence and monthly incidence ARIMA model were constructed by using MapInfo software to analyze the spatiotemporal epidemiological characteristics of mumps in Yaan City.Results There was no significant clustering on the spatial distribution.Overall,the incidence showed two seasonal peaks in late Spring and early Summer(April and July)and early Winter(November January of the following year),with a predominance in late Spring and early Summer.The ARIMA(2,1,1)(1,1,0)12 model was identified as the optimal model based on the monthly incidence.The overall incidence level in 2021 is predicted to decrease compared with that in 2020.Conclusions The ARIMA model can provide a better fit and short-term analysis of the number of mumps cases in Yaan City,and the characteristics of the spatial and temporal distribution of mumps and their short-term predictions can provide evidence for risk prediction and scientific prevention and control.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70