检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程传良 彭晨[1] 曾德良[2] 张腾飞[3] Chuanliang Cheng;Chen Peng;Deliang Zeng;Tengfei Zhang(School of Mechanical and Electrical Engineering and Automation,Shanghai University,Shanghai 200444,China;School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China;College of Automation and College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
机构地区:[1]上海大学机电工程与自动化学院,上海200444 [2]华北电力大学控制与计算机工程学院,北京102206 [3]南京邮电大学自动化学院和人工智能学院,江苏南京210023
出 处:《系统仿真学报》2022年第7期1430-1438,共9页Journal of System Simulation
基 金:国家自然科学基金(61833011)。
摘 要:中间点温度是超超临界(ultra supercritical,USC)机组的一个重要参数,其系统具有强非线性,常规方法很难对其进行建模。为了解决非线性问题,并获得良好的建模效果,提出了一种基于复合加权人类学习优化网络(composite weighted human learning optimization network,CWHLON)的建模方法,以动态线性模型的形式来模拟对象的非线性动态过程。在仿真实验部分,将CWHLON模型与传统的递推最小二乘法和其他三种元启发式方法得到的模型进行综合比较,数据显示本文提出的方法在模型精度方面平均提高了77.93%,最大提高了78.65%,实现了辨识精度的有效提升。Intermediate point temperature is an important parameter in ultra supercritical(USC)unit.However,due to strong nonlinearity,it is difficult to determine the form and coefficients of the corresponding model by using traditional methods.In order to get a better control effect,a novel composite weighted human learning optimization network(CWHLON)is proposed to tackle the abovementioned problems.Though the real-time dynamic linear model,the characteristics of the object are accurately simulated.In the simulation experiment,CWHLON is compared with the traditional recursive least squares and other three meta heuristic methods.The data show that the proposed method improves the model accuracy by 77.93%on average and 78.65%on maximum,effectively improving the identification accuracy.
关 键 词:中间点温度 强非线性 建模 复合加权人类学习优化网络 超超临界机组
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43