检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张立艺 武文红[1] 牛恒茂[2] 石宝 段凯博 苏晨阳 ZHANG Liyi;WU Wenhong;NIU Hengmao;SHI Bao;DUAN Kaibo;SU Chenyang(College of Information Engineering,Inner Mongolia University of Technology,Hohhot 010080,China;College of Construction Engineering and Surveying and Mapping,Inner Mongolia Technical College of Construction,Hohhot 010020,China)
机构地区:[1]内蒙古工业大学信息工程学院,呼和浩特010080 [2]内蒙古建筑职业技术学院建筑工程与测绘学院,呼和浩特010020
出 处:《计算机工程与应用》2022年第16期1-17,共17页Computer Engineering and Applications
基 金:国家自然科学基金(62066035);内蒙古自治区高等学校科学技术研究项目(NJZY22374)。
摘 要:安全帽是施工现场最常见和实用的个人防护工具,能够有效防止和减轻意外带来的头部伤害。安全帽检测是施工现场人员安全管理的主要工作,也是施工现场智能化监控技术的重要内容,随着深度学习的发展,现已成为智慧工地建设的重要部分。为了综合分析深度学习在安全帽检测中的研究现状,针对安全帽检测算法研究,归纳了常用的安全帽检测算法和基于深度学习的安全帽检测算法,具体说明了其优缺点。在此基础上,针对现有问题,系统地总结分析了安全帽检测算法的相关改进方法,并梳理了各类方法的特点、优势和局限性。最后展望了基于深度学习的安全帽检测算法的未来发展方向。Safety helmet is the most common and practical personal protective tool on the construction site,which can effec-tively prevent and reduce head injury caused by accidents.Helmet detection is the main work of personnel safety manage-ment on the construction site,and it is also an important content of intelligent monitoring technology on the construction site.With the development of deep learning,it has become an important part of smart site construction.In order to compre-hensively analyze the research status of deep learning in helmet detection,aiming at the research of helmet detection algo-rithm,the commonly used helmet detection algorithm and helmet detection algorithm based on deep learning are summa-rized,and their advantages and disadvantages are explained in detail.On this basis,aiming at the existing problems,this paper systematically summarizes and analyzes the relevant improvement methods of helmet detection algorithm,and combs the characteristics,advantages and limitations of various methods.Finally,the future development direction of hel-met detection algorithm based on deep learning is prospected.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158