检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王坤 WANG Kun(Huainan Vocational and Technical College,Huainan Anhui 232001,China)
出 处:《佳木斯大学学报(自然科学版)》2022年第4期19-23,30,共6页Journal of Jiamusi University:Natural Science Edition
摘 要:采用PSO-LM算法对RBF神经网络进行优化,并构建出基于PSO-LM-RBF神经网络算法的建筑能效预测模型,并以某办公建筑在某段时间内的能耗数据为例,最后验证了本研究提出的优化模型。结果显示,PSO-LM-RBF神经网络算法的收敛速度显著高于改进之前,且相对误差低于2.3%,平均、最大相对误差均显著低于改进前。PSO-LM-RBF神经网络模型可以更好的预测数据变化过程,改善了RBF神经网络的预测能力。With the rapid development of Chinese economy,the energy conservation of office buildings has gradually attracted the attention of all sectors of society.In this study,PSO-LM algorithm is used to optimize RBF neural network,and a building energy efficiency prediction model based on PSO-LM-RBF neural network algorithm is constructed.Taking the energy consumption data of an office building in a certain period of time as an example,the optimization model proposed in this study is finally verified.The results show that the convergence speed of PSO-LM-RBF neural network algorithm is significantly higher than that before improvement,and the relative error is less than 2.3%,and the average and maximum relative errors are significantly lower than that before improvement.PSO-LM-RBF neural network model can better predict the data change process and improve the prediction ability of RBF neural network.
关 键 词:RBF神经网络 PSO-LM 办公建筑 能效 模型构建
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49