检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢永成 李光升 魏宁 李刚 XIE Yong-cheng;LI Guang-sheng;WEI Ning;LI Gang(Department of Weapons and Control,Army Armored Forces Academy,Beijing 100072,China)
机构地区:[1]陆军装甲兵学院兵器与控制系,北京100072
出 处:《自动化与仪表》2022年第8期97-101,共5页Automation & Instrumentation
基 金:陆军装备部重点项目(LJ20191A050223)。
摘 要:针对典型BP神经网络在装甲车辆电气系统电路板故障诊断中容易出现自适应效果差、局部极小值等问题,通过引入遗传算法(genetic algorithm,GA),对典型BP神经网络的各层参数进行优化,从而对典型BP神经网络故障诊断模型进行改进。为了验证模型的可靠性,以装甲车辆电气系统中80式灭火系统控制盒电路板故障诊断数据为例,对参数优化后的模型进行分析验证,结果表明,改进后的模型能够有效克服BP神经网络模型自适应不够的问题,并避免网络陷入局部极小值,从而有效提升装甲车辆电气系统电路板故障诊断效率和质量。Aiming at the problems of poor adaptive effect and local minimum of typical BP neural network in circuit board fault diagnosis of armored vehicle electrical system,the parameters of each layer of typical BP neural network are optimized by introducing genetic algorithm(GA),so as to improve the fault diagnosis model of typical BP neural network.In order to verify the reliability of the model,taking the circuit board fault diagnosis data of the control box of type 80 fire extinguishing system in the electrical system of armored vehicles as an example,the model after parameter optimization is analyzed and verified.The results show that the improved model can effectively overcome the problem of insufficient adaptability of BP neural network model and avoid the network falling into local minimum,So as to effectively improve the efficiency and quality of fault diagnosis of circuit board of armored vehicle electrical system.
关 键 词:遗传算法 BP神经网络 装甲车辆 电气系统 故障诊断
分 类 号:TJ810.1[兵器科学与技术—武器系统与运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13