A Novel Workload-Aware and Optimized Write Cycles in NVRAM  

在线阅读下载全文

作  者:J.P.Shri Tharanyaa D.Sharmila R.Saravana Kumar 

机构地区:[1]Department of ECE,Bannari Amman Institute of Technology,Tamil Nadu,India [2]Department of CSE,Jai Shriram Engineering College,Tamil Nadu,India

出  处:《Computers, Materials & Continua》2022年第5期2667-2681,共15页计算机、材料和连续体(英文)

摘  要:With the emergence of the Internet of things(IoT),embedded systems have now changed its dimensionality and it is applied in various domains such as healthcare,home automation and mainly Industry 4.0.These Embedded IoT devices are mostly battery-driven.It has been analyzed that usage of Dynamic Random-Access Memory(DRAM)centered core memory is considered the most significant source of high energy utility in Embedded IoT devices.For achieving the low power consumption in these devices,Non-volatile memory(NVM)devices such as Parameter Random Access Memory(PRAM)and Spin-Transfer Torque Magnetic RandomAccess Memory(STT-RAM)are becoming popular among main memory alternatives in embedded IoT devices because of their features such as high thickness,byte addressability,high scalability and low power intake.Additionally,Non-volatile Random-Access Memory(NVRAM)is widely adopted to save the data in the embedded IoT devices.NVM,flash memories have a limited lifetime,so it is mandatory to adopt intelligent optimization in managing the NVRAM-based embedded devices using an intelligent controller while considering the endurance issue.To address this challenge,the paper proposes a powerful,lightweight machine learning-based workload-adaptive write schemes of the NVRAM,which can increase the lifetime and reduce the energy consumption of the processors.The proposed system consists of three phases like Workload Characterization,Intelligent Compression and Memory Allocators.These phases are used for distributing the write-cycles to NVRAM,following the energy-time consumption and number of data bytes.The extensive experimentations are carried out using the IoMT(Internet of Medical things)benchmark in which the different endurance factors such as application delay,energy and write-time factors were evaluated and compared with the different existing algorithms.

关 键 词:Internet of things DRAM PRAM STT-RAM machine learning internet of medical things ENDURANCE 

分 类 号:TP333.4[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象