Distribution and transport characteristics of fine particulate matter in beijing with mobile lidar measurements from 2015 to 2018  被引量:4

在线阅读下载全文

作  者:Lihui Lv Tianshu Zhang Yan Xiang Wenxuan Chai Wenqing Liu 

机构地区:[1]Information Materials and Intelligent Sensing Laboratory of Anhui Province,Institutes of Physical Science and Information Technology,Anhui University,Hefei 230601,China [2]Key Laboratory of Environmental Optics and Technology,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Hefei 230031,China [3]China National Environmental Monitoring Centre,Beijing 100012,China

出  处:《Journal of Environmental Sciences》2022年第5期65-75,共11页环境科学学报(英文版)

基  金:This work was supported by the National Key Project of MOST(Nos.2017YFC0213002,2018YFC0213101,and 2018YFC020101);the Doctoral Scientific Research Foundation of Anhui University(No.Y040418191);the open fund of the Key Laboratory of Environmental Optics and Technology,Chinese Academy of Sciences(No.K130462001)。

摘  要:Accurately quantifying the concentration and transport flux of atmospheric fine particu-late matter(PM_(2.5))is vital when attempting to thoroughly identify the pollution formation mechanism.In this study,the mobile lidar measurements in Beijing on heavily polluted days in December from 2015 to 2018 are presented.The lidar was mounted on a vehicle,which could perform measurements along designated routes.On the basis of mobile lidar mea-surements along closed circuits of the 6th Ring Road around Beijing,the spatial distribution and transport flux of PM_(2.5) in Beijing were determined with information of wind field.In the spatial distribution,both the concentration and transport of PM_(2.5) were revealed to be more significant in the southern section of Beijing.The regional transport layer at heights<1.3 km plays an important role in pollution formation.The maximum transport flux reached 1600μg/(m^(2)*sec)on 11 December 2016.With the aerosol boundary layer height determined from the image edge detection(IED)method,the inter-annual variations of the aerosol boundary layer height(ABLH)were also analysed.The ABLH decreased from 0.73 to 0.46 km during the same heavy pollution period from 2015 to 2018.Increasingly adverse aerosol boundary layer(ABL)meteorological factors,including lower ABLH,light winds,temperature inversions,and accumulated moisture,have become necessary for pollution formation in Beijing.

关 键 词:AEROSOL PM_(2.5) Regional transport LIDAR Mobile measurement 

分 类 号:X513[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象