针对细微特征进行K-means聚类的电台分选识别技术  被引量:1

Radio Sorting and Recognition Technology Based on K-means Clustering for Subtle Features

在线阅读下载全文

作  者:杨亮亮 YANG Liangliang(Southwest China Institute of Electronic Technology,Chengdu 610036,China)

机构地区:[1]中国西南电子技术研究所,成都610036

出  处:《电讯技术》2022年第8期1149-1154,共6页Telecommunication Engineering

摘  要:现代战场中的无线通信设备日益增多,精准获取个体信息已成为研究热点,但也是难点。针对通信电台,提出了一种分选识别技术。该技术从电台物理层特性出发,对其辐射信号的细微特征进行K-means聚类以实现分选,分选的同时提取各个个体的特征属性值,未知信号通过与特征属性值相关运算实现个体识别。该技术无需先验知识,无需训练运算,通过实验验证,其可行、高效,易于工程实现。Wireless communication equipment is increasing in modern battlefield,and accurate access to individual information has become a research focus,but it is also a difficult point.For communication radio,a sorting and identification technology is proposed.According to the characteristics of the radio physical layer,the technology carries out K-means clustering of the subtle characteristics of its radiation signal to achieve separation.At the same time,the individual characteristic attribute values are extracted.Finally,individual recognition is realized through related operation with the attribute values.The technical does not require prior knowledge or training calculation.Experiment results prove it is feasible,efficient and easy to implement.

关 键 词:电台分选识别 细微特征 K-MEANS聚类 个体识别 

分 类 号:TN971[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象