检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨弋鋆 邵文泽[1,2] 邓海松 葛琦[1] 李海波[1] YANG Yijun;SHAO Wenze;DENG Haisong;GE Qi;LI Haibo(College of Telecommunications and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,P.R.China;Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education,Nanjing University of Science and Technology,Nanjing 210094,P.R.China;School of Statistics and Mathematics,Nanjing Audit University,Nanjing 211815,P.R.China)
机构地区:[1]南京邮电大学通信与信息工程学院,南京210003 [2]南京理工大学高维信息智能感知与系统教育部重点实验室,南京210094 [3]南京审计大学统计与数据科学学院,南京211815
出 处:《重庆邮电大学学报(自然科学版)》2022年第4期565-575,共11页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基 金:国家自然科学基金(61771250,11901299);中央高校基本科研业务费专项资金(30918014108)。
摘 要:针对缘于深度学习模型脆弱性的对抗样本攻击这一国内外热门研究课题,以无人驾驶等实际应用为背景,探讨了针对Yolo-v2行人检测系统的对抗攻击方法;基于Yolo-v2对行人目标的预测置信度和分类概率,提出基于两阶段目标类指引的行人检测对抗补丁生成算法。创新性地提出了目标类指引的攻击策略,通过先后实施目标类指引的对抗补丁生成和对抗补丁增强,有效引导了对抗补丁在训练生成过程中的收敛方向,以此逐步提升对抗补丁攻击行人检测系统的能力;在Inria数据集上实现了79个目标类指引的对抗补丁生成训练与测试。结果表明,算法以“teddy bear”为目标类生成了攻击效果最佳的对抗补丁,行人检测交并比(IOU)指标可达0.0435,显著优于对照算法的0.2448。Owing to the vulnerability of deep learning models,attack with adversarial examples has become a pretty hot topic in the past several years at home and abroad.This paper mainly discusses the vulnerability of Yolo-v2,which is a well-known candidate pedestrian detection model for driverless cars.In short,a target-guided two-stage approach is proposed for generating adversarial patches so as to fool Yolo-v2.Specifically speaking,the approach puts forward a new target-guided attack strategy,which enables adversarial patches converge to a definite direction,and successively conducts two stages of adversarial training,which gradually enhances the ability of adversarial patches attacking Yolo-v2.Using Inria as the training set and guided by 79 target classes,it is empirically found that the class“teddy bear”helps the proposed method achieve the best attacking performance.The pedestrian detection IOU of the attacked Yolo-v2 is 0.0435,which is significantly lower than reference algorithm.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30