检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程文辉 车文刚[1] CHENG Wenhui;CHE Wengang(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,P.R.China)
机构地区:[1]昆明理工大学信息工程与自动化学院,昆明650500
出 处:《重庆邮电大学学报(自然科学版)》2022年第4期638-645,共8页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
摘 要:现有结合特征提取与预测模型的方法不能准确把握金融时间序列的混沌性与交互性,导致预测精度不高。针对此问题,提出一种基于二次分解与长短期记忆(long short term memory,LSTM)网络的金融时间序列预测算法。使用变分模态分解方法与集成经验模态分解方法依次解析金融时间序列数据,得到能表达数据混沌性特征的模态;将模态信息输入到融合有因子分解机(factorization machine,FM)的长短期记忆网络模型中,融合获取到的长记忆性特征与交互性特征,进而预测最终的结果;选取沪深300指数的历史数据作为实验数据集,通过多组对比实验验证算法的有效性。实验结果表明,提出的算法可以有效提升模型的预测能力,同时表达金融时间序列的混沌性、长记忆性、交互性。The existing methods combining feature extraction and prediction model cannot accurately grasp the chaos and interaction of financial time series,resulting in low prediction accuracy.A financial time series prediction algorithm based on secondary decomposition and long short term memory(LSTM)is proposed to solve this problem.The variational mode decomposition method and the ensemble empirical mode decomposition method are used to analyze the financial time series data,so as to obtain the mode that can express the chaotic characteristics of the data.Then the modal information is input into the long-term and short-term memory network model fused with factorization machine(FM),the obtained long-term memory features and interactive features are fused,and then the final result is predicted.The historical data of CSI 300 index is selected as the experimental data set,and the effectiveness of the algorithm is verified by multiple groups of comparative experiments.Experimental results show that the proposed algorithm can effectively improve the prediction ability of the model and express the chaos,long memory and interaction of financial time series.
关 键 词:二次分解 金融时间序列 长短期记忆(LSTM)网络 因子分解机
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7