检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭海驹 严科文 林松 赖浩源 张泽鑫 PENG Haiju;YAN Kewen;LIN Song;LAI Haoyuan;ZHANG Zexin(Huizhou Natural Resources Planning and Survey Institute,Huizhou 516000,China)
机构地区:[1]惠州市自然资源规划勘测院,广东惠州516000
出 处:《地理空间信息》2022年第8期59-63,共5页Geospatial Information
基 金:安徽省教育厅无人机开发及数据应用重点实验室开放基金资助项目(WRJ19004)。
摘 要:通常情况下,融合kmeans聚类与Hausdorff距离的点云精简算法在目标曲面的曲率值过小时需要设定Hausdorff距离阈值,在模型表面复杂情况下曲率估算精度不高,针对以上问题对该算法进行改进。首先在kmeans聚类中k值的确定采用手肘法确定聚类数保证聚类精度,然后采用维数特征Hausdorff距离代替主曲率Hausdorff距离提取特征点,避免了曲率的估算和在曲率值过小时设定Hausdorff距离阈值,最后融合kmeans聚类簇心与采用维数特征Hausdorff距离提取的特征点实现数据精简。采用实际扫描的点云数据进行验证,实验表明改进后的算法在相近精简率下提取的特征点更多,精度更高。In the past,the point cloud simplification algorithm integrating K-means clustering and Hausdorff distance needs to set the Hausdorff distance threshold when the curvature value is too small in the flat region,and the accuracy of curvature estimation is not high in the case of com-plex model surface.In view of the above problems,we improved the algorithm.Firstly,the determination of K value in K-means clustering was made by using the elbow method to determine the clustering number to ensure the clustering accuracy.Then,the Hausdorff distance was used to extract feature points by replacing the main curvature Hausdorff distance with the dimension feature,avoiding the estimation of curvature and set-ting the Hausdorff distance threshold when the curvature value is too small.Finally,the K-means cluster core was fused with the feature points extracted by the Hausdorff distance with the dimension feature to achieve data simplification.The experimental results show that the improved al-gorithm can extract more feature points at the same reduction rate,and the reduction accuracy is higher.
关 键 词:点云精简 kmeans聚类 HAUSDORFF距离 维数特征 手肘法
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.14