基于多层次特征交互的点击率预测模型  

Click Through Prediction Model Based on Multi Level Feature Interaction

在线阅读下载全文

作  者:郑嘉伟 王粉花[1,2,3] 赵波 严由齐 ZHENG Jiawei;WANG Fenhua;ZHAO Bo;YAN Youqi(School of Automation and Electrical Engineering,University of Science and Technology Beijing,Beijing 100083,China;Institute of Artificial Intelligence,University of Science and Technology Beijing,Beijing 100083,China;Beijing Engineering Research Center of Industrial Spectrum Imaging,Beijing 100083,China)

机构地区:[1]北京科技大学自动化学院,北京100083 [2]北京科技大学人工智能研究院,北京100083 [3]北京市工业波谱成像工程中心,北京100083

出  处:《实验室研究与探索》2022年第5期21-25,49,共6页Research and Exploration In Laboratory

基  金:国家重点研发计划重点专项(2017YFB1400101-01);北京科技大学中央高校基本科研业务费专项(FRF-BD-19-002A)。

摘  要:针对点击率预测模型xDeepFM对低阶特征信息利用不充分且训练参数过多问题,提出一种基于多层次特征交互的点击率预测模型。该模型在DNN与嵌入层之间引入二阶特征交互层,充分融合低阶与高阶特征,并通过二阶特征向量对位相乘的方式减少参数量,提升模型的特征组合能力;在输入特征的预处理过程中引入最大支持的维度参数,避免稀疏特征在独热编码映射时出现维度爆炸。结果表明,在Criteo和Avauz两个真实数据集上本文所提模型AUC指标比xDeepFM模型分别提高了0.007 8和0.004 3。The key to CTR prediction lies in the combination of input features.Aiming at xDeepFM,the most effective CTR prediction model using feature interaction,a CTR prediction model based on multi-level feature interaction was proposed to solve the problem of insufficient use of low-order feature information and too many parameters.In this model,a second-order feature interaction layer is introduced between DNN and the embedding layer to fully integrate low-order and high-order features,and the number of parameters is reduced by means of the second-order feature vector multiplication to improve the feature combination ability of the model.The maximum dimension parameters are introduced in the preprocessing process of the input features to avoid the dimension explosion of sparse features in the single thermal coding mapping.The results show that the AUC index of the proposed model is improved by 0.0078 and 0.0043 compared with xDeepFM model on Criteo and Avauz real data sets,respectively.

关 键 词:点击率预测 多层次 特征交互 早停法 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象