检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐义飞 李晓冬 李新德[1,3] XU Yifei;LI Xiaodong;LI Xinde(School of Automation,Southeast University,Nanjing 210096,China;Science and Technology on Information System Engineering Laboratory,Nanjing 210000,China;Nanjing Center for Applied Mathematics,Nanjing 211135,China)
机构地区:[1]东南大学自动化学院,江苏南京210096 [2]信息系统工程重点实验室,江苏南京210000 [3]南京数学应用中心,江苏南京211135
出 处:《系统工程与电子技术》2022年第9期2707-2715,共9页Systems Engineering and Electronics
基 金:信息系统工程重点实验室开放基金(05202003)资助课题。
摘 要:伪装是欺骗观察者感知系统的一种手段,善于伪装的个体在纹理特征上与背景具有高度的相似性。为解决前景与背景因相似而导致的像素归属歧义,提出一种基于定位和补偿网络(locating and compensation network,LCNet)的伪装目标分割网络。该方法效仿了捕食者从搜索→确立→聚焦的寻猎过程,涵盖双主干网的强感知提取、定位模块的双注意力以及级联的非对称补偿模块的细化像素模糊。实验表明,在4种评价指标下,LCNet在3个具有挑战的伪装数据集上都显著优于现有的6种最新模型,具有较高分割性能。Camouflage is the instinct to deceive the perception of the observer,which presents the high similarity of the textural characteristics with the surroundings.In order to address the ambiguous regions generated by the similarity between background and foreground,this paper proposes a camouflaged object segmentation network based on locating and compensation network(LCNet).Inspired by predator process:Search→Establish→Focusing,the paradigm of the proposed method is achieved via dual-backbone with the strong sense of knowledge extraction,locating module with double attention,and cascading asymmetric compensation module with pixel refining.Experimental results have shown that the performances of LCNet are superior than six state-of-the-art models at the three major challenging camouflaged datasets in terms of four metrics,and the effectiveness of LCNet is demonstrated.
关 键 词:纹理伪装目标 非对称注意力补偿 双注意力定位 双主干网
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222