基于迭代阈值分割的星载SAR洪水区域快速提取  被引量:5

A fast extraction method of flood areas based on iterative threshold segmentation using spaceborne SAR data

在线阅读下载全文

作  者:苗添 曾虹程[1] 王贺 陈杰[1] MIAO Tian;ZENG Hongcheng;WANG He;CHEN Jie(School of Electronics and Information Engineering,Beihang University,Beijing 100191,China)

机构地区:[1]北京航空航天大学电子信息工程学院,北京100191

出  处:《系统工程与电子技术》2022年第9期2760-2768,共9页Systems Engineering and Electronics

摘  要:基于星载合成孔径雷达(synthetic aperture radar,SAR)的洪水区域提取可对洪灾信息进行高效提取。然而,传统提取方法往往时间复杂度较高,严重影响了洪灾区域获取的时效性。基于改进迭代阈值分割原理,本文提出了一种星载SAR图像洪水区域快速提取方法。首先,对预处理后的SAR图像进行高斯拟合再抽样,抑制SAR图像直方图异常点的影响。其次,利用迭代阈值算法进行水体提取,并基于形态学滤波对噪声进行抑制。最后,对已识别的水体区域开展变化检测,实现洪灾区域的提取。基于2020年7月鄱阳湖流域特大洪灾前后的哨兵-1 SAR图像,本文开展了洪水区域提取对比试验。试验结果表明,该方法可在保证洪水区域提取精度的同时,显著提升处理效率。Flood area extraction method based on spaceborne synthetic aperture radar(SAR)can extract flood area with high precision.However,traditional flood area extraction methods are time consuming,which will seriously affect the time effectiveness of flood area extraction.In this paper,an improved iterative threshold segmentation method for fast extraction of flood area is proposed,using spaceborne SAR images.Firstly,the preprocessed SAR image is resampled by Gaussian fitting to suppress the influence of abnormal points in the histogram of SAR image.Then,the water body is extracted by the iterative threshold segmentation method,and the noise suppression is performed using the morphological filtering.Finally,change detection is carried out to obtain the flood area,based on the extracted water body.Based on the Sentinel-1 SAR images of Poyang Lake before and after the flood in July 2020,a comparative experiment of flood area extraction is carried out in this paper.Experimental results shows that the method can extract the flood area quickly with high accuracy.

关 键 词:合成孔径雷达 迭代阈值分割 变化检测 洪水区域提取 

分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象