基于罗德里格斯参数的惯性系传递对准算法  被引量:3

Inertial-frame-based transfer alignment using Rodriguez parameters

在线阅读下载全文

作  者:徐庚 何永旭 张勇刚 XU Geng;HE Yongxu;ZHANG Yonggang(College of Intelligent Systems Science and Engineering,Harbin Engineering University,Harbin 150001,China)

机构地区:[1]哈尔滨工程大学智能科学与工程学院,黑龙江哈尔滨150001

出  处:《系统工程与电子技术》2022年第9期2903-2913,共11页Systems Engineering and Electronics

基  金:国家自然科学基金(61773133)资助课题。

摘  要:针对传统的传递对准模型在大失准角下的强非线性问题以及由残余杆臂误差导致的传递对准精度下降问题,提出了一种改进的惯性系传递对准算法。首先,对子惯导姿态矩阵进行链式分解,得到常值姿态矩阵;然后,利用罗德里格斯参数等价替代该常值姿态矩阵,建立关于罗德里格斯参数和残余杆臂误差的具有弱非线性量测的传递对准模型;最后,利用非线性滤波对状态进行估计。基于摇摆运动的仿真实验表明,在存在大安装误差角以及残余杆臂误差情况下,算法相比于现有方法,对准速度更快,对准精度更高,在5~10 s内即可完成传递对准。车载试验结果也间接说明算法具有更高的传递对准性能。Aiming at the strong nonlinear problem for the conventional transfer alignment model with large misalignment angle and the problem of the degraded alignment accuracy induced by the residual lever arm error,an improved inertial-frame-based transfer alignment(ITA)method is proposed for inertial navigation system(INS).Firstly,a constant attitude matrix is obtained based on the chain rule for the attitude matrix of slave INS.Then,the constant attitude matrix is equivalently replaced by the Rodriguez parameter,and a novel transfer alignment model with weakly nonlinear measurement equation is established based on the Rodriguez parameter and the residual lever arm error.Finally,the nonlinear Kalman filters are implemented for the estimation.Simulation results under the sway motion illustrate that when the installation error angles are large and the residual lever arm error exists,the ITA method has the faster alignment speed and the better alignment accuracy than existing transfer alignment methods,and the transfer alignment can be completed in 5~10s.The field test results also illustrate that the ITA method has significantly better alignment performance.

关 键 词:惯性导航系统 传递对准 非线性卡尔曼滤波 安装误差角 失准角 

分 类 号:U666.1[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象