检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭阳阳 张进[1,2,3] Peng Yangyang;Zhang Jin(College of Marine Geosciences,Ocean University of China,Qingdao 266100,China;Function Laboratory of Marine Geo-Resource Evaluation and Exploration Technology,Qingdao 266237,China;The Key Laboratory of Submarine Geosciences and Prospecting Techniques,Ministry of Education,Ocean University of China,Qingdao 266100,China)
机构地区:[1]中国海洋大学海洋地球科学学院,山东青岛266100 [2]海洋矿产资源评价与探测技术功能实验室,山东青岛266237 [3]中国海洋大学海底科学与探测技术教育部重点实验室,山东青岛266100
出 处:《中国海洋大学学报(自然科学版)》2022年第9期103-109,共7页Periodical of Ocean University of China
基 金:国家自然科学基金项目(91958206)资助。
摘 要:当前海洋水体的温度预测多采用CTD、XBT等仪器单点测定,所测得的海洋水体温度虽然垂向分辨率高,但横向连续性差。本文提出了一种利用支持向量回归机结合地震属性预测海水水体温度参数的方法,该方法在少量CTD数据约束下能够反演出纵横向高分辨率的水体温度结构。本文提取海水反射地震数据的13种属性值进行主成分分析,然后利用支持向量回归机(ε-SVR)结合CTD数据进行模型训练并对水体温度剖面进行预测,所预测的渤海夏季海水温度剖面特征与文献记载一致。At present, the temperature prediction of ocean water is mostly determined by CTD, XBT at a single point. The measured ocean water temperature has a high vertical resolution, but has a low horizontal resolution. In this paper, we propose a method to predict seawater temperature parameters by using support vector regression machine combined with seismic attributes. This method can invert the high-resolution water temperature structure in vertical and horizontal directions under the constraints of a small amount of CTD data. This paper extracts 13 attribute of seismic reflection data of seawater for principal component analysis, and then uses support vector regression(ε-SVR) combined with CTD data to conduct model training and predict the water temperature profile. The predicted characteristics of the summer sea temperature profile of Bohai Sea are consistent with those recorded in the literature.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.61.19