检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:白云蛟 刘祎[2] 张鹏程[2] 桂志国[2] BAI Yunjiao;LIU Yi;ZHANG Pengcheng;GUI Zhiguo(Department of Mechanics,Jinzhong University,Jinzhong 030619,China;Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data,North University of China,Taiyuan 030051,China)
机构地区:[1]晋中学院机械系,山西晋中030619 [2]中北大学生物医学成像与影像大数据山西省重点实验室,山西太原030051
出 处:《测试技术学报》2022年第5期398-403,共6页Journal of Test and Measurement Technology
基 金:山西省高等学校科技创新资助项目(2020L0282,2020L0595);晋中学院博士科研启动资助项目;晋中学院1331创客团队(jzxycktd2019033)。
摘 要:传统的反锐化掩模法(Unsharp Masking Algorithm, UMA)采用固定的增益系数,难以在抑制噪声放大和增强图像特征之间实现较好的平衡.因此,提出了一种基于自适应增益系数的两级UMA.首先,采用UMA重点增强图像的细节;然后,采用加权核范数最小化(Weighted Nuclear Norm Minimization, WNNM)算法去除噪声;最后,再次采用UMA重点增强图像的强边缘.其中,两次UMA均采用基于梯度模的增益函数,自适应地调整细节处和强边缘处的增益系数.实验结果表明,相比传统的UMA,所提方法在增强工业X射线图像重要结构特征的同时,可以有效抑制噪声放大和防止出现过冲现象.The fixed gain coefficient is used in the traditional unsharp masking algorithm(UMA), which makes it difficult to achieve a good balance between suppressing noise amplification and enhancing image features. Therefore, a two-stage unsharp masking algorithm based on the adaptive gain coefficient is proposed. Firstly, the UMA is used to enhancing the details of the image. Secondly, the weighted nuclear norm minimization(WNNM) algorithm is used to remove noise. Finally, the UMA is once again used to enhancing the strong edges of the image. In both UMAs, the gain function based on the modulus of the image gradient is used to adaptively adjust the gain coefficients at details and strong edges. Compared with the traditional UMA. the experimental results indicate the proposed method can effectively suppress noise amplification and prevent overshoot while enhancing the important structural features of the industrial X-ray image.
关 键 词:反锐化掩模法 自适应增益系数 加权核范数最小化算法 X射线图像 图像细节增强
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7