检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘松涛[1] 赵帅 汪慧阳 LIU Song-tao;ZHAO Shuai;WANG Hui-yang(Dalian Naval Academy,Dalian 116018,China)
出 处:《中国电子科学研究院学报》2022年第6期523-533,共11页Journal of China Academy of Electronics and Information Technology
基 金:中国博士后基金(2015M572694,2016T90979)。
摘 要:现代海空战场愈发复杂多变的电磁环境促使雷达辐射源识别技术向环境交互、动态化及智能化等认知方向发展。文中首先给出雷达辐射源识别框架,从特征提取、特征选择和分类识别三个阶段阐述了辐射源识别过程;然后,重点从信号波形识别、个体识别和工作状态识别三个方面综述了研究现状;最后,对雷达辐射源识别的发展热点和趋势进行了概括总结。The increasingly complex and changeable electromagnetic environment of modern sea and air battlefields promotes the development of radar emitter identification technology in the cognitive direction of environmental interaction,dynamics and intelligence.The framework of radar emitter identification is given firstly,which expounds the emitter identification process from three stages,i.e.,feature extraction,feature selection,classification and recognition.Then the research status from three aspects of signal waveform recognition,specific emitter identification and working state recognition is reviewed on emphasis.Finally,the development hotspots and trends of radar emitter identification are summarized.
关 键 词:雷达辐射源识别 信号波形识别 个体识别 工作状态识别 深度学习
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229