检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙中华 傅正财[1] 刘亚坤[1] 陈坚[1] 毕晓蕾[2] 刘娟[2] SUN Zhonghua;FU Zhengcai;LIU Yakun;CHEN Jian;BI Xiaolei;LIU Juan(Key Laboratory of Control of Power Transmission and Conversion,Ministry of Education,Shanghai Jiao Tong University,Shanghai 200030,China;State Key Laboratory of Chemicals Safety,SINOPEC Research Institute of Safety Engineering,Tsingtao 266101,China)
机构地区:[1]上海交通大学电力传输与功率变换控制教育部重点实验室,上海200030 [2]中国石化青岛安全工程研究院化学品安全国家重点实验室,山东青岛266101
出 处:《电瓷避雷器》2022年第4期155-161,168,共8页Insulators and Surge Arresters
摘 要:雷暴云产生的闪电危害巨大,雷暴发生时其地面电场的特征可应用于关键系统的雷电预警和雷电防护。笔者依据雷暴云偶极子模型,研究典型雷暴云下地面电场的特征,提出基于卷积神经网络(Convolutional Neural Network,CNN)的雷暴云地面电场识别方法。该方法考虑不同天气情况下地面电场的特征,对大量样本数据进行训练和识别,证明了卷积神经网络用于识别雷暴云下地面电场的可行性,划分了基于卷积神经网络识别结果的雷电预警等级。结果表明:所提方法区分各类别电场样本的整体准确率高于93%,通过对典型雷暴云下地面电场特征的学习,实现了雷暴云电荷中心的地理区域识别。所提方法可为局部区域的雷暴云大气电场识别和雷电预警提供思路。Lightning originated from thunderstorm clouds is harmful,and the associated ground electric field can offer valuable guidance for lightning warning and lightning protection.The characteristics of the ground electric filed under typical thunderstorm clouds are studied on a basis of the classic dipole thundercloud model.The author proposed a method for recognizing the ground electric field of typical thunderstorm clouds based on the Convolutional Neural Network(CNN).A number of data samples of ground electric field under different synoptic conditions are trained and recognized by a CNN model in the proposed method,proving the feasibility of CNN method in recognizing different samples.The classification of lightning warning levels is suggested based on the recognition results.Results show that,the overall accuracy rate of the proposed method is higher than 93%in distinguishing the different types of electric field samples.The geographical area of the charge center in thunderstorm clouds can be recognized through the characteristics learning of the ground electric field.The proposed method can serve to the recognition of thunderstorm clouds and lighting warning in local areas.
关 键 词:雷暴云 大气电场 偶极子模型 卷积神经网络 雷电预警
分 类 号:P427.3[天文地球—大气科学及气象学] P429
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222