改进MSEA-CNN的船舶电机轴承故障诊断方法  

Research on fault diagnosis method of marine motor bearing based on improved MSEA-CNN

在线阅读下载全文

作  者:李忠 王闻恺 王鹏飞 LI Zhong;WANG Wen-kai;WANG Peng-fei(Guangzhou Aids to Navigation Department,NGCS,MOT,Guangzhou 510000,China;China Waterborne Transportation Research Institute,Beijing 100088,China)

机构地区:[1]交通运输部南海航海保障中心广州航标处,广东广州510000 [2]交通运输部水运科学研究院,北京100088

出  处:《舰船科学技术》2022年第14期119-122,共4页Ship Science and Technology

摘  要:由于舰船电机轴承信号类型较多,且大多数为无用信号,降低了故障信号分量之间的相关性,因此研究改进MSEA-CNN的船舶电机轴承故障诊断方法。利用自适应线性神经网络,设计移除非轴承故障分量滤波器,在轴承振动信号内剔除非故障信号分量,提取轴承故障信号分量。通过生成式对抗神经网络,得到各故障信号分量的样本标签,实现故障信号分量分类。融合样本标签与故障信号分量,获取故障诊断训练集。利用注意力与多尺度卷积神经网络,建立故障诊断模型。实验证明:该方法可有效提取故障信号分量;该方法提取故障信号分量特征间的相关系数较低,说明该方法具备较优的特征提取效果。Because there are many types of ship motor bearing signals,and most of them are useless signals,which reduces the correlation between fault signal components,the fault diagnosis method of Ship Motor Bearing Based on msea-cnn is studied and improved.Using adaptive linear neural network,a filter for removing non bearing fault components is designed,and the fault signal components are removed from the bearing vibration signal to extract the bearing fault signal components.Through the generative countermeasure neural network,the sample labels of each fault signal component are obtained to realize the classification of fault signal components.The sample label and fault signal component are fused to obtain the fault diagnosis training set.A fault diagnosis model is established by using attention and multi-scale convolution neural network.Experiments show that this method can effectively extract fault signal components.The correlation coefficient between fault signal component features extracted by this method is low,which shows that this method has better feature extraction effect.

关 键 词:对抗神经网络 船舶电机 轴承故障 滤波器 故障信号分量 诊断模型 

分 类 号:TM307.1[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象