检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张平均[1] 翁悦 王小红 李稳稳 林艺斌 ZHANG Pingjun;WENG Yue;WANG Xiaohong;LI Wenwen;LIN Yibin(School of Electronic,Electrical Engineering and Physics,Fujian University of Technology,Fuzhou 350118,China;Zhangzhou Xinhuacheng Machinery Manufacturing Co.,Limited,Zhangzhou 363999,China)
机构地区:[1]福建工程学院电子电气与物理学院,福建福州350118 [2]漳州鑫华成机械制造有限公司,福建漳州363999
出 处:《福建工程学院学报》2022年第4期373-377,共5页Journal of Fujian University of Technology
基 金:福建省科技创新项目(2020C0052)。
摘 要:为满足人造板表面缺陷图像分割的精度要求,提出了一种改进的UNet语义分割网络模型。在传统的UNet网络结构上将编码部分改进为残差网络ResNet50并去掉连接层与平均池化层,网络通过残差块堆叠获取更多特征的底层信息;同时在跳跃连接中嵌入聚焦注意力机制的模块,抑制干扰信息,保留有效位置信息,聚焦缺陷区域并加强学习。对4种UNet网络模型的人造板表面缺陷图像分割进行仿真比较,结果表明,融合聚焦注意力机制的残差UNet网络模型在像素准确率和平均交并比等指标上有较大提升,分割精度较高。In order to meet the requirements of the precision of image segmentation of surface defects of wood-based panels,an improved UNet semantic segmentation network model was proposed.The coding part of the traditional UNet network was modified into residual network ResNet50,and the connection layer and average pooling layer were removed.The network was stacked with residual blocks to obtain more underlying information of features.At the same time,the module of attention focusing mechanism is embedded in the jump connection to suppress interference information,retain effective location information,focus defect location and enhance learning.The simulation comparison of image segmentation of surface defects of wood-based panels based on four UNet models shows that the residual UNet model integrating the attention focusing mechanism has been greatly improved in pixel accuracy and average intersection ratio,as well as the segmentation accuracy.
关 键 词:聚焦注意力机制模块 UNet 残差网络 人造板表面缺陷 图像分割
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.20.44