面向群体行驶场景的时空信息融合车辆轨迹预测  被引量:4

Vehicle trajectory prediction based on spatio-temporal information fusion in crowded driving scenario

在线阅读下载全文

作  者:李立[1] 平振东 朱进玉 徐志刚[3] 汪贵平[1] LI Li;PING Zhen-dong;ZHU Jin-yu;XU Zhi-gang;WANG Gui-ping(School of Electronics and Control Engineering,Chang'an University,Xi'an 710064,Shaanxi,China;Shandong Provincial Communications Planning and Design Institute Group Co.,Ltd.,Jinan 250101,Shandong,China;School of Information Engineering,Chang'an University,Xi'an 710064,Shaanxi,China)

机构地区:[1]长安大学电子与控制工程学院,陕西西安710064 [2]山东省交通规划设计院集团有限公司,山东济南250101 [3]长安大学信息工程学院,陕西西安710064

出  处:《交通运输工程学报》2022年第3期104-114,共11页Journal of Traffic and Transportation Engineering

基  金:国家重点研发计划(2018YFB1600600);国家自然科学基金项目(71901040,71971029);陕西省自然科学基础研究计划项目(2021JC-28)。

摘  要:将车辆间时空交互信息融入卷积社会池化网络中,提出了一种面向群体行驶场景的有人驾驶车辆轨迹预测模型;使用长短时记忆(LSTM)网络预测群体车辆速度,基于此预测值计算群体车辆间的速度差;构造LSTM编码器捕捉群体车辆行驶轨迹的时间序列特征,设计卷积社会池化网络提取群体车辆间的空间依赖关系,使用LSTM解码器预测未来车辆各种动作的出现概率和相应轨迹,将具有最高出现概率的动作及其轨迹作为最终轨迹预测结果;使用真实轨迹数据集对所构建模型进行了参数标定和性能验证,测试了不同轨迹编解码与速度预测方法对模型性能的影响,确定了最优模型结构。计算结果表明:相较于历史速度,使用预测速度计算速度差作为模型输入可将均方根误差(RMSE)降低19.45%;相较于门控循环神经网络,使用LSTM进行速度预测可将RMSE降低4.91%;相较于原始卷积社会池化网络,所提出模型的轨迹预测误差在RMSE与负似然对数2个指标上分别降低了20.32%和21.04%,明显优于其他卷积社会池化网络变体;所提出模型与原始卷积社会池化网络计算耗时差距约3 ms,能够满足实时应用要求。The spatio-temporal interaction information among vehicles was integrated into the convolutional social pooling network to formulate a human-driving vehicle trajectory prediction model in the crowded driving scenario. The long short term memory(LSTM) network was used to predict the speeds of the crowded vehicles. The prediction result was used to calculate the speed differences among the vehicles. The LSTM encoder was built to capture the time-series features of the crowded vehicle trajectories. The convolutional social pooling network was designed to captured the spatial dependence of the crowded vehicles. The emerging probabilities of all possible movements of the vehicles and corresponding trajectories were predicted by the LSTM decoder. The movement with the highest emerging probability and its trajectory were taken as final prediction result of trajectory. The real vehicle trajectory dataset was used in the parameter calibration and performance verification of the proposed model. Different methods of trajectory encoding/decoding and speed predicting were tested to figure out their influences on the model performance. The test results were used to identify the optimal model structure. Calculation results show that compared with historical speed, predicted speed used to calculate speed difference as model input can decrease by 19.45% in terms of root mean square error(RMSE). Compared with the gate recurrent unit, the LSTM network as speed predictor can decrease by 4.91% in terms of RMSE. Compared with the original convolutional social pooling network, the trajectory prediction errors of the proposed model respectively decrease by 20.32% and 21.04% in terms of RMSE and negative log-likelihood. The model performance is also significantly better than other variants of the original convolutional social pooling network. The computation time difference of the proposed model and original convolutional social pooling network is about 3 ms, which meets the request of real-time application. 8 tabs, 9 figs, 23 refs.

关 键 词:智能交通 车辆轨迹预测 群体行驶场景 卷积社会池化 时空信息融合 长短时记忆网络 速度差 

分 类 号:U491.2[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象