检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:华漫[1] 辛瑜 李燕玲[1] 张先浩[2] HUAMan;XIN Yu;LI Yanling;ZHANG Xianhao(School of Computer Science,Civil Aviation Flight University of China,Guanghan,Sichuan 618307,China;Office of Academic Research,Civil Aviation Flight University of China,Guanghan,Sichuan 618307,China)
机构地区:[1]中国民航飞行学院计算机学院,四川广汉618307 [2]中国民航飞行学院科研处,四川广汉618307
出 处:《计算机工程与应用》2022年第17期249-255,共7页Computer Engineering and Applications
基 金:国家自然科学基金民航联合基金项目(U1633127,U1433130)。
摘 要:随着无人飞行器的迅猛发展,根据顶视状态下的行人动态阴影生物特征进行人物验证和行为识别成为一个重要的发展方向,而从低空无人飞行器平台获取行人动态阴影生物特征成为一个更具有挑战性的研究热点。现有的阴影提取方法大多基于固定摄像头,并不适用于运动平台。联合机器学习和图切割理论,提出了一种新的针对低空无人飞行器平台的动态人影检测方法。根据像素特征和区域特征构建协同训练的两个独立视图,以SVM为分类器,采用机器学习的方法对阴影生物特征进行半自动提取,根据上述运动结果构建最小能量方程的数据项,根据图像的梯度特征构建能量方程的约束项,运用图切割理论对上述提取结果进行优化。实验结果表明,所提出的方法比单纯的协同训练方法具有更好的效果,可进一步优化低空无人飞行器平台下所获取的阴影生物特征质量。With the rapid development of unmanned aerial vehicles, character verification and behavior recognition based on pedestrian dynamic shadow biometrics in the top-view state has become an important development direction, and obtaining pedestrian dynamic shadow biometrics from low-altitude UAV platforms has become a more challenging research hotspot. Most of the existing shadow extraction methods are based on fixed cameras, which are not suitable for motion platforms. In this paper, it combines machine learning and graph cutting theory to propose a new dynamic human shadow detection method for low-altitude UAV platforms. First, two independent views for co-training are constructed according to pixel features and regional features. It uses SVM as the classifier to semi-automatically extract shadow biometric features by machine learning methods. Then, the data items of the minimum energy equation are constructed based on the above motion results and the constraint terms of the energy equation are constructed according to the gradient features of the image. And it uses the graph cutting theory to optimize the above extraction results. The experimental results show that the proposed method has a better effect than the pure collaborative training method, and can further optimize the quality of shadow biometrics obtained under the low-altitude UAV platform.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.152.81