基于神经网络预测太阳黑子变化  

Predicting sunspot variations through neural network

在线阅读下载全文

作  者:程术 石耀霖 张怀 CHENG Shu;SHI Yaolin;ZHANG Huai(CAS Key Laboratory of Computational Geodynamics,College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院大学地球与行星科学学院中国科学院计算地球动力学重点实验室,北京100049

出  处:《中国科学院大学学报(中英文)》2022年第5期615-626,共12页Journal of University of Chinese Academy of Sciences

基  金:国家自然科学联合基金(U1839207);国家自然科学基金(41774106);国家杰出青年科学基金(41725017)资助。

摘  要:太阳黑子变化是太阳强磁扰动的表征。结合长短期记忆单元神经网络和一维卷积神经网络预测太阳黑子变化,使用3种不同的数据集,分别为1700—2020年年均太阳黑子数(yearly mean sunspot number,YSSN)、1749—2021年月均太阳黑子数(monthly mean sunspot number,MSSN)和1874—2021年月均太阳黑子面积(monthly mean sunspot area,MSSA)。首先,基于YSSN数据集,预测得到2021年YSSN以及第25太阳周YSSN,2025年预测值达到最大,其值为163.4;其次,基于MSSN数据集,预测得到2021年6月MSSN以及第25太阳周MSSN,2024年10月预测值达到最大,其值为245.9;接着,基于MSSA数据集,预测得到2021年6月MSSA,其值为73.1;最后,基于MSSA数据集,将纬度划分为13个分区,发现可以重建太阳黑子蝴蝶图。以上均表明神经网络方法为探测太阳黑子变化提供了新的解决思路。Sunspot variations are the sun’s symptoms of strong magnetic perturbations.In this paper,we use long short-term memory neural network and one-dimensional convolution neural network to detect sunspot variations.Here we use three different datasets,including the yearly mean sunspot number(YSSN)from 1700 to 2020,the monthly mean sunspot number(MSSN)from 1749 to 2021 and the monthly mean sunspot areas(MSSA)from 1874 to 2021.First,based on the YSSN dataset,we obtain YSSN for 2021 and the predicted YSSN in the 25th solar cycle appears at 2025 which equals 163.4;Then,based on the MSSN dataset,we obtain MSSN for June 2021 and the predicted YSSN in the 25th solar cycle appears in October 2024 which equals 245.9;Next,based on the MSSA dataset,the predicted MSSA for June 2021 is 73.1;Finally,the latitude is divided into 13 partitions to predict the butterfly diagram,and still,neural network can reconstruct the butterfly diagram.Therefore,neural network can provide a physical perspective for sunspot investigation.

关 键 词:太阳黑子数 太阳黑子面积 太阳周 蝴蝶图 神经网络 

分 类 号:P182.9[天文地球—天文学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象