混合时滞复值神经网络的事件触发状态估计  被引量:1

Event-Based State Estimation of Complex-Valued Neural Networks With Mixed Delays

在线阅读下载全文

作  者:刘飞扬 李兵 LIU Feiyang;LI Bing(School of Mathematics and Statistics,Chongqing Jiaotong University,Chongqing 400074,P.R.China)

机构地区:[1]重庆交通大学数学与统计学院,重庆400074

出  处:《应用数学和力学》2022年第8期911-919,共9页Applied Mathematics and Mechanics

基  金:重庆市自然科学基金(面上项目)(cstc2019jcyj-msxmX0722);重庆市教委科技重大项目(KJZD-M202100701);重庆市创新群体项目(CXQT21021);重庆市研究生联合培养基地建设项目(JDLHPYJD2021016)。

摘  要:研究了事件触发机制下混合时滞复值神经网络的状态估计问题.首先基于测量输出设计了事件触发机制,有效降低了估计器更新的频率.在触发机制中引入了等待时间,以此避免了采样中的Zeno现象.运用Lyapunov方法和复值矩阵的性质,建立了估计误差系统全局渐近稳定的充分性判据,并基于线性矩阵不等式技巧给出了复值增益矩阵K的求解算法.最后的数值例子验证了理论成果的正确性和有效性.The event-based state estimation problem was investigated for a class of complex-valued neural networks with mixed delays.Based on the measurement output,a novel event-triggering scheme was introduced to reduce the frequency of updating while ensuring the estimation performance.A waiting time was first employed to avoid the Zeno phenomenon.By means of the Lyapunov direct method and some properties of complex-valued matrices,a sufficient criterion was established to guarantee the globally asymptotic stability for the error system.The weighted parameters and gain matrices were designed with resort to the feasible solution of matrix inequalities.A numerical simulation example illustrates the effectiveness of the proposed method.

关 键 词:复值神经网络 状态估计 事件触发控制 Zeno现象 混合时滞 

分 类 号:O357.41[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象