Runge-Kutta Discontinuous Galerkin Method Using WENO-Type Limiters:Three-Dimensional  被引量:2

在线阅读下载全文

作  者:Jun Zhu Jianxian Qiu 

机构地区:[1]College of Science,Nanjing University of Aeronautics and Astronautics,Nanjing,Jiangsu 210016,P.R.China [2]School of Mathematical Sciences,Xiamen University,Xiamen,Fujian 361005,P.R.China and Department of Mathematics,Nanjing University,Nanjing,Jiangsu 210093,P.R.China

出  处:《Communications in Computational Physics》2012年第3期985-1005,共21页计算物理通讯(英文)

基  金:The research was partially supported by NSFC grant 10931004,10871093,11002071 and the European project ADIGMA on the development of innovative solution algorithms for aerodynamic simulations.

摘  要:This paper further considers weighted essentially non-oscillatory(WENO)and Hermite weighted essentially non-oscillatory(HWENO)finite volume methods as limiters for Runge-Kutta discontinuous Galerkin(RKDG)methods to solve problems involving nonlinear hyperbolic conservation laws.The application discussed here is the solution of 3-D problems on unstructured meshes.Our numerical tests again demonstrate this is a robust and high order limiting procedure,which simultaneously achieves high order accuracy and sharp non-oscillatory shock transitions.

关 键 词:Runge-Kutta discontinuous Galerkin method LIMITER WENO HWENO high order limiting procedure 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象