检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何浩洋 夏荣斌[2] HE Haoyang;XIA Rongbin(Nanjing NRIET Industrial Co.,Ltd.,Nanjing 211100,China;Changzhou Research Institute,Lanzhou Jiaotong University,Changzhou 213000,China)
机构地区:[1]南京恩瑞特实业有限公司,江苏南京211100 [2]兰州交通大学常州研究院,江苏常州213000
出 处:《铁道学报》2022年第8期50-59,共10页Journal of the China Railway Society
摘 要:针对传统基于SINS/BDS组合的列车组合导航系统过程中因列车运行环境复杂多变导致传感器运行状态存在随机干扰的特点,为提高系统的可靠性,降低引入的不确定噪声对组合导航精度的影响,提出一种基于双因子抗差估计的SINS/BDS组合算法模型,在传统M估计基础上,引入系统观测模型不符因子,降低观测模型和动力学模型误差对组合导航精度的影响。为解决因BDS数据延时以及速度位置更新解算造成的延时误差问题,在抗差更新模型中引入延时估计误差。通过仿真与车载实验表明,双因子抗差估计模型可以有效提高组合导航系统的鲁棒性,延时估计能有效降低组合更新以及数据延时误差,降低复杂环境的随机噪声对列车定位精度的影响。In view of the characteristics of random interference in the operation of the sensors of traditional SINS/BDS-based integrated train navigation system due to the complex and changeable train operating environment,in order to improve the reliability of the system and reduce the impact of uncertain noise on the accuracy of integrated navigation,a SINS/BDS integrated algorithm model based on dual-factor robust estimation was proposed.Based on traditional M-estimation,the inconsistency factor of system observation model was introduced to reduce the influence of the errors of the observation model and dynamic model on the accuracy of the integrated navigation.In order to solve the problem of delay error caused by BDS data delay and velocity position update,a delay estimation error was introduced into robust update model.Simulation and on-board experiments show that the two-factor robust estimation model can effectively improve the robustness of integrated navigation system,while the delay estimation can effectively reduce the combination update and data delay errors,and reduce the impact of random noise in complex environment on train positioning accuracy.
分 类 号:U284[交通运输工程—交通信息工程及控制]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3