检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张克双 邬春学[1] 张生[1] 林晓[2] ZHANG Ke-shuang;WU Chun-xue;ZHANG Sheng;LIN Xiao(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093;The College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200030,China)
机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093 [2]上海师范大学信息与机电工程学院,上海200030
出 处:《计算机工程与科学》2022年第9期1676-1685,共10页Computer Engineering & Science
基 金:国家重点研发计划(2018YFC0810204,2018YFB17026);国家自然科学基金(61872242);上海市科技创新行动计划(19511105103);上海现代光学系统重点实验室项目。
摘 要:大量传统的颈部超声神经检测算法,检测敏感性低,假阳性数量大,低层特征利用率不足。而颈部超声图像数量较少,边缘模糊且对噪声敏感。对此,提出一种改进型U-Net分支融合算法:改进损失函数,获得高质量的候选样本;使用多尺度卷积结构替换原结构中普通卷积层,增强特征提取能力;结合扩张卷积替换中、深层池化操作,提高低层特征利用率。通过对比实验验证了所提算法的算法性能。实验表明,与传统的U-Net和SegNet卷积网络对于小尺寸超声神经分割的结果相比,所提算法的分割效果较两者分别提升了近9%和17%,且对于正常尺寸和小尺寸的神经分割均有较高的分割精度。Traditional cervical ultrasound nerve detection algorithms have low detection sensitivity,a large number of false positives,and insufficient utilization of low-level features.However,the number of ultrasound images of the neck is small,and the edges are blurred and sensitive to noise.Therefore,an improved U-Net branch fusion algorithm is proposed.It improves the loss function to obtain high-quality candidate samples,replaces the ordinary convolutional layer in the original structure with a multi-scale convolution structure to enhance feature extraction,and combines expanded convolution to replace middle and deep pooling operations so as to improve the utilization of low-level features.The performance of the proposed algorithm is verified through comparative experiments.The experimental results show that,compared with the traditional U-Net and SegNet convolution networks,the proposal improves the small-size ultrasonic neural segmentation effect by nearly 9%and 17%respectively,and the segmentation accuracy is higher for normal-size and small-size neural segmentation.
关 键 词:颈部超声图像神经检测 多尺度 加权损失函数 卷积神经网络
分 类 号:R445.1[医药卫生—影像医学与核医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.70.76