A deep learning method for solving high-order nonlinear soliton equations  被引量:1

在线阅读下载全文

作  者:Shikun Cui Zhen Wang Jiaqi Han Xinyu Cui Qicheng Meng 

机构地区:[1]School of Mathematical Sciences,Dalian University of Technology,Dalian 116024,China [2]State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,Ministry of Natural Resources,Hangzhou 310o00,China [3]Key Laboratory for Computational Mathematics and Data Intelligence of Liaoning Province,Dalian 116024,Chin

出  处:《Communications in Theoretical Physics》2022年第7期57-69,共13页理论物理通讯(英文版)

基  金:supported by National Science Foundation of China(52171251);Liao Ning Revitalization Talents Program(XLYC1907014);the Fundamental Research Funds for the Central Universities(DUT21ZD205);Ministry of Industry and Information Technology(2019-357);the Project of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,MNR(QNHX2112)。

摘  要:We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higherorder nonlinear soliton equations. The physics-informed neural networks approximate the solution of the equation under the conditions of differential operator, initial condition and boundary condition. We apply this method to high-order nonlinear soliton equations, and verify its efficiency by solving the fourth-order Boussinesq equation and the fifth-order Korteweg–de Vries equation. The results show that the deep learning method can be used to solve high-order nonlinear soliton equations and reveal the interaction between solitons.

关 键 词:deep learning method physics-informed neural networks high-order nonlinear soliton equations interaction between solitons the numerical driven solution 

分 类 号:O175[理学—数学] TP18[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象