检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:翟欢欢 赵静文 刘翔[1] 石蕴玉[1] 汤显 宋家琳[2] 杨少玲 ZHAI Huanhuan;ZHAO Jingwen;LIU Xiang;SHI Yunyu;TANG Xian;SONG Jialin;YANG Shaoling(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;Department of Ultrasound,Shanghai Changzheng Hospital,Shanghai 200003,China;Department of Cardiac Ultrasound,Shanghai Fengxian District Central Hospital,Shanghai 201418,China)
机构地区:[1]上海工程技术大学电子电气工程学院,上海201620 [2]上海长征医院超声科,上海200003 [3]上海市奉贤区中心医院心脏超声科,上海201418
出 处:《中国医学影像技术》2022年第9期1385-1390,共6页Chinese Journal of Medical Imaging Technology
摘 要:目的提出注意力门(AG)和空洞空间金字塔池化(ASPP)UNet模型(AA-UNet),观察其提取肝脏高频超声图像中肝包膜并用于评估肝硬化的价值。方法纳入47例肝硬化患者及20例非肝脏疾病患者,于肝脏高频声像图中手工标注肝包膜作为标签图像;将AG及ASPP加入UNet,以之提取声像图中的肝包膜;最后加入视觉几何组(VGG)16全连接层和Softmax分类器,评估有无肝硬化及其程度,即正常及轻度、中度肝硬化。采用AA-UNet提取58例颈动脉斑块患者提取颈动脉高频超声声像图中动脉壁,以验证AA-UNet的鲁棒性。结果AA-UNet提取的肝脏高频超声声像图中的肝包膜与标签图像相似,其交并比、精确率及F分数均大于DeepLabv3+、UNet、UNet+AG及UNet+ASPP提取结果,且用于提取颈动脉高频超声声像图中的动脉壁的效果亦较佳。AA-UNet用于评估肝脏高频超声声像图中正常及轻、中度肝硬化的准确率分别为90.00%、81.67%及78.33%。结论AA-UNet用于提取肝脏高频超声声像图中的肝包膜及评估轻度肝硬化的效果较佳。Objective To develop the attention gates(AG)and atrous spatial pyramidal pooling(ASPP)UNet(AA-UNet),and to observe its value for extracting liver capsule on high frequency ultrasonograms and evaluating liver cirrhosis.Methods Totally 47 patients with liver cirrhosis and 20 patients without liver diseases were enrolled,and the liver capsules on high frequency ultrasonograms were manually labeled as label images.Then,AG and ASPP were added to UNet to extract liver capsules on high frequency ultrasonography.Finally,full connection layers and Softmax classifier of visual geometry group(VGG)16 were added to evaluate normal,mild and moderate degree of liver cirrhosis.Meanwhile,carotid artery on high-frequency ultrasonography of 58 patients with carotid plaque were collected,and the walls of carotid arteries were extracted using AA-UNet in order to verify its robustness.Results Liver capsules extracted from high-frequency ultrasonograms with AA-UNet were similar to label images,and the intersection over union,precision and F_score of AA-UNet were all larger than those of DeepLabv3+,UNet,UNet+AG and UNet+ASPP.The effect of AA-UNet for extracting walls of carotid artery on high frequency ultrasonograms remained good.The accuracy of AA-UNet for evaluating normal,mild and moderate degree of liver cirrhosis was 90.00%,81.67%and 78.33%,respectively.Conclusion AA-UNet was effective for extracting liver capsule on high frequency ultrasonograms and evaluating mild liver cirrhosis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117