检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李文峰 邓晓平 彭伟[1] 孟宋萍 LI Wen-Feng;DENG Xiao-Ping;PENG Wei;MENG Song-Ping(School of Information and Electrical Engineering,Shandong Jianzhu University,Jinan 250101,China)
机构地区:[1]山东建筑大学信息与电气工程学院,济南250101
出 处:《计算机系统应用》2022年第9期294-299,共6页Computer Systems & Applications
基 金:山东省重大科技创新工程(2021CXGC011205)。
摘 要:用户分类是用能分析的一种重要方法,而智能电表的广泛应用为用户用能分析提供了大量的可用数据.为进一步提高用户分类精度与用能特征的提取能力,本文提出了一种自学习边权重的图卷积网络.所提出的网络通过具有注意力机制的特殊初始化层将原始能耗数据转换为图,并从生成的图中提取能耗特征,最终根据图的学习特征输出用户类.为证明所提出方法的有效性,本文在实际用能数据集上进行了对比实验.实验结果表明,本文方法不仅能够更好地提取用户特征,而且取得了更好的分类性能.User classification is an important method for energy consumption analysis, and the wide application of smart meters provides a large number of available data for user classification. To improve the accuracy of user classification and the extraction ability of energy consumption features, this study proposes a graph convolutional network(GCN) of selflearned edge weights for user classification. It converts the original energy consumption data into a graph through a special initialization layer with attention mechanisms and extracts energy consumption features from the generated graph.Then, the proposed network outputs the user classes according to the learning features of the graph. Through comparative experiments on a real energy consumption dataset, it is proven that the feature extraction of the proposed method is more intuitive and clear, and the classification performance of the proposed method is better than the existing methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4