检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄向春 赵芬霞[1] 安建业[1] HUANG Xiang-chun;ZHAO Fen-xia;AN Jian-ye(School of Science,Tianjin University of Commerce,Tianjin 300134,China)
出 处:《软件导刊》2022年第9期14-18,共5页Software Guide
基 金:国家社会科学基金青年项目(20CTJ011)。
摘 要:为解决项目评分矩阵稀疏性问题,提出结合项目特征和用户评分的模糊性特性。首先利用类高斯模糊数描述项目所属类别的隶属度,然后应用梯形模糊数表示用户对项目的喜爱程度构建用户—项目类别偏好矩阵,最后构建基于项目特征的模糊性和用户兴趣的方法计算推荐信任分。在MovieLens 100k数据集上的实验结果表明,当N取1-300时,在不损失top-N推荐召回率的情况下,该算法相较于基于用户和基于项目的协同过滤推荐算法,平均推荐准确率分别提高了39.97%和5.74%,有效解决了数据稀疏性问题,可在历史行为数据较少的情况下,推荐用户感兴趣的项目。In order to solve the problem of sparse item scoring matrix,a fuzzy feature combining item features and user ratings is proposed.First,Gaussian like fuzzy numbers are used to describe the membership degree of the category to which the project belongs,then trapezoidal fuzzy numbers are used to represent the user′s preference for the project,and a user project category preference matrix is constructed. Finally,a method based on the fuzziness of project characteristics and user interest is constructed to calculate the recommendation score. The experimental results on movielens 100k dataset show that when n is 1~300,the average recommendation accuracy of this algorithm is improved by39.97% and 5.74% respectively compared with the user based and item based collaborative filtering recommendation algorithms without losing the top-N recommendation recall rate. It effectively solves the problem of data sparsity,and can recommend items of interest to users in the case of less historical behavior data.
关 键 词:协同过滤推荐算法 模糊数 用户兴趣模型 推荐信任分 用户偏好矩阵
分 类 号:TP312[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49