检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭敬[1] 张玉杰[1] GUO Jing;ZHANG Yujie(School of Electrical and Control Engineering,Shaanxi University of Science and Technology,Xi'an 710021,China)
机构地区:[1]陕西科技大学电气与控制工程学院,陕西西安710021
出 处:《应用光学》2022年第5期879-885,共7页Journal of Applied Optics
基 金:陕西省教育厅服务地方专项计划项目(21JC004)。
摘 要:目前的节能照明控制算法仍有陷入局部最优的问题。为了寻求全局最优解,提高室内照明的节能效果,设计一种遗传模拟退火算法对照明系统的控制参数进行优化求解。该算法通过在遗传操作后对优秀个体进行模拟退火处理,增强了算法的局部搜索能力。根据迭代的次数和种群的适应度对遗传概率进行自适应调节,使得算法在前期丰富种群多样性,避免算法“早熟”。提出基于人工神经网络的照度模型来计算室内照度分布,对照明舒适度进行评估,为构造优化算法的适应函数提供了依据。通过仿真实验,在本文介绍的照明场景应用遗传模拟退火算法,并与传统粒子群算法和遗传算法进行比较,其照明节能性能分别高出5.30%和13.61%。The current energy-saving lighting control algorithm still falls into the problem of local optimum. In order to seek for the global optimal solution and improve the energy-saving effect of indoor lighting, a genetic simulated annealing algorithm was designed to optimize the control parameters of lighting system. The local search ability of the algorithm was enhanced by simulated annealing treatment of excellent individuals after genetic manipulation. According to the number of iterations and the fitness of the population, the genetic probability was adaptively adjusted so that the algorithm could enrich the population diversity in the early stage and avoid the prematurity of the algorithm. An illumination model based on artificial neural network was proposed to calculate the indoor illumination distribution and evaluate the illumination comfort, which provided a basis for constructing the fitness function of optimization algorithm. Through simulation experiments, the genetic simulated annealing algorithm was applied in the introduced lighting scenes, and compared with the traditional particle swarm algorithm and genetic algorithm, the lighting energy-saving performance was 5.30% and 13.61% higher respectively.
关 键 词:节能照明 径向基函数神经网络 遗传算法 模拟退火算法
分 类 号:TN29[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249