基于卷积神经网络的手写数字识别研究  被引量:5

Handwritten Digit Recognition Based on Convolution Neural Network

在线阅读下载全文

作  者:高春庚[1] 孙建国[1] GAO Chun-geng;SUN Jian-guo(Department of Information Engineering,Jiyuan Vocational and Technical College,Jiyuan 459000,Henan,China)

机构地区:[1]济源职业技术学院信息工程系,河南济源459000

出  处:《兰州文理学院学报(自然科学版)》2022年第5期50-54,共5页Journal of Lanzhou University of Arts and Science(Natural Sciences)

基  金:河南省科技攻关项目(212102210402)。

摘  要:为了解决传统的多层神经网络在手写体数字识别中网络参数过多、计算量大、准确率低等问题,将卷积神经网络应用于手写体数字识别,设计了一种新的网络模型,在MNIST数据集上对网络模型进行训练;对比分析常用的优化算法在不同学习率时对识别效果的影响,选用具有自适应学习率的优化算法.利用MNIST数据集进行测试,本文模型识别准确率可以达到99%以上,损失接近于0.实验结果表明,利用该网络模型进行手写数字识别,识别率高、运算量小,提高了识别速度和准确率,具有很强的鲁棒性.In order to solve the problems of too many network parameters,large amount of calculation and low accuracy of traditional multilayer neural network in handwritten digit recognition,a new network model is designed and trained on the MINIST dataset by using convolution neural network in handwritten digit recognition.By comparing and analyzing the influence of common optimization algorithms on recognition performance at different learning rates,an optimization algorithm with adaptive learning rate is selected.Using the MNIST data set,the recognition accuracy of this model can reach more than 99%and the loss is close to 0.Experiments show that by using this network model for handwritten digit recognition,the accuracy is high,the computation is small,the recognition speed and accuracy are improved,and it has strong robustness.

关 键 词:模式识别 卷积神经网络 手写数字识别 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象