检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王乐军 王钰婷 龚铭新 邹凝祥 俞华 章晓菁 叶晓东 WANG Lejun;WANG Yuting;GONG Mingxin;ZOU Ningxiang;YU Hua;ZHANG Xiaojing;YE Xiaodong(Physical Education Department,Tongji University,Shanghai 200092,China;Shanghai Research Institute of Sport Science&Shanghai Anti-Doping Agency,Shanghai 200030,China;Gymnastic Training Center,Shanghai Elite Sport Training Adminstrative Center,Shanghai 202162,China)
机构地区:[1]同济大学体育教学部,上海200092 [2]上海体育科学研究所(上海市反兴奋剂中心),上海200030 [3]上海市竞技体育训练管理中心体操中心,上海202162
出 处:《体育科研》2022年第5期84-90,共7页Sport Science Research
基 金:上海市体育局科技综合计划项目(16Z013)。
摘 要:目的:建立蹦床运动员竞技能力结构评价指标体系,在此基础上构建基于人工神经网络的蹦床运动员竞技能力结构评价模型,为蹦床运动员竞技能力结构的个性化诊断及针对性训练提供参考。方法:以上海市体操运动中心16名蹦床运动员为研究对象,对受试者进行3次跨度6个月以上的初选指标测试。基于因子分析建立蹦床运动员竞技能力结构评价指标体系。在此基础上以竞技能力结构评价指标为自变量,运动员成绩为因变量,构建运动员竞技能力结构的人工神经网络评价模型,并开发运动员竞技能力结构评价系统。结果:蹦床运动员竞技能力结构指标体系由身体形态、身体素质、专项技术和心理素质4个维度构成,包括腿长、腿长/身高比、纵跳高度、原地立臂角度、60 s悬垂举腿、立卧撑、网上腾空高度、空跳高度/原地纵跳高度比、着网瞬间立臂角度、30次空跳高度下降率、状态焦虑水平和特质焦虑水平共12个指标。所构建的Elman人工神经网络模型由12个输入节点、9个隐含层节点和1个输出层节点组成,模型预测精度在95.87%~99.37%,平均预测精度高达97.66%。结论:构建了基于人工神经网络的蹦床运动员竞技能力结构评价模型,模型具有较好的预测精度。在训练中,可应用人工神经网络对竞技能力结构进行评价,动态获知竞技能力结构改变对总体运动成绩的影响作用。该研究对于蹦床运动员竞技能力结构的综合评价和针对性训练可提供科学性指导意见。This study aims to establish the evaluation indices system and competitive ability structure model of trampoline athletes and thus to provide reference for personalized diagnosis and sport training of trampoline athletes. Sixteen trampoline athletes participated in the test of preliminary evaluation index for three times with six-month interval for two consecutive tests. The final evaluation indices were determined by the factor analysis of test data and the competitive ability structure model of trampoline athletes based on artificial neural network was established, in which the evaluation indices were taken as independent variables while the sport performance was taken as dependent variable. It finds that the competitive ability evaluation indices of trampoline athletes can be divided into four parts of physical appearance, physical ability, special ability, psychology quality and consisted of leg length, ratio of leg length to height, vertical jump height, shoulder flexibility angle, tuck hang times in 60-second, standing-to-push-ups times in 30-second, height of arch on trampoline, ratio of arch height on trampoline to vertical jump height, shoulder flexibility angle in the landing moment, decrease ratio of height of arch during 30-times vertical jump on trampoline, state anxiety level and trait anxiety level. The Elman artificial neural network was established with twelve input nodes, nine hidden layer nodes and one output node. The prediction accuracy of the model was between 95.87% and 99.37%, and the average prediction accuracy is as high as 97.66%. In conclusion, a competitive ability structure model of trampoline athletes based on artificial neural network was constructed. The model has high prediction accuracy and can be used to the evaluation and training improvement program of the competitive ability structure of trampoline athletes.
分 类 号:G804[文化科学—运动人体科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15