检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘钊瑞 高云鹏[1] 郭建波 李云峰[1] 顾德喜 文一章 LIU Zhaorui;GAO Yunpeng;GUO Jianbo;LI Yunfeng;GU Dexi;WEN Yizhang(College of Electrical and Information Engineering,Hunan University,Changsha 410082,China;Hangzhou Haixing Electrical Co.,Ltd,Hangzhou 310011,China)
机构地区:[1]湖南大学电气与信息工程学院,湖南长沙410082 [2]杭州海兴电力科技股份有限公司,浙江杭州310011
出 处:《电力系统保护与控制》2022年第18期92-102,共11页Power System Protection and Control
基 金:国家自然科学基金项目资助(51777061);广西电网科技项目资助(GXKJXM20200020)。
摘 要:针对用户侧窃电检测背景下无监督方法的适用性,研究如何解决特征提取和异常检测间的解耦问题,提出基于深度自编码器高斯混合模型(Deep Auto-encoder Gaussian Mixture Model,DAGMM)的用户窃电行为检测方法。首先对数据进行增广迪基-福勒检验,获取具有平稳性的用电数据维度。然后通过压缩网络提取数据潜在特征,利用估计网络及高斯混合模型获取反映异常程度的样本能量。最后基于端对端的学习方式对网络参数联合优化以避免模型解耦,将样本能量超过异常阈值的用户识别为窃电,据此实现用户窃电行为检测。实验结果表明,基于深度自编码器高斯混合模型的窃电行为检测方法受窃电样本影响小,提取的特征可有效反映用户用电规律,具有更高的检测准确率。相比于现有方法,其检出率、误检率、F1测度及AUC等评价指标均有显著提高。Considering the applicability of unsupervised methods for user-side electricity theft detection,this paper studies how to solve the decoupling problem between feature extraction and anomaly detection.It proposes a user-side electricity theft detection method based on the deep auto encoder Gaussian mixture model(DAGMM).First,the electricity consumption data dimension with stationarity is obtained according to the augmented Dickey Fuller test.Then,potential characteristics of data are extracted by compressing the network.An estimation network and Gaussian mixture model are used to obtain sample energy.This reflects the degree of anomaly.Finally,network parameters are optimized jointly based on end-to-end learning to avoid model decoupling,and identify users whose sample energy exceeds the abnormal threshold as electricity thief.In this way theft of electricity can be detected.The experimental results show that the detection method based on DAGMM is less affected by the sample of electricity theft,and the extracted features can effectively reflect the user's electricity consumption law with higher detection accuracy.Compared with the existing methods,the detection rate,false detection rate,F1 measurement and AUC of the proposed method are significantly improved.
关 键 词:窃电行为 无监督学习 深度自编码器高斯混合模型 增广迪基-福勒检验 解耦
分 类 号:TM73[电气工程—电力系统及自动化] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117