一种基于BP神经网络的太阳能-土壤源热泵复合系统供暖策略仿真  被引量:7

SIMULATION ON A HEATING STRATEGY BASED ON BP NEURAL NETWORK OF SOLAR-GROUND SOURCE HEAT PUMP COMPOSITE SYSTEM

在线阅读下载全文

作  者:杨震 陈翔燕 刘诚 许波[1] 吕钟灵 陈振乾[1] Yang Zhen;Chen Xiangyan;Liu Cheng;Xu Bo;Lyu Zhongling;Chen Zhenqian(School of Energy and Environment,Southeast University,Nanjing 210096,China;Jiangsu Shengshi Mechanical and Electrical Engineering Co.,Ltd.,Lianyungang 222000,China;China Design Group,Nanjing 210014,China)

机构地区:[1]东南大学能源与环境学院,南京210096 [2]江苏盛世机电工程有限公司,连云港222000 [3]华设设计集团股份有限公司,南京210014

出  处:《太阳能学报》2022年第8期224-229,共6页Acta Energiae Solaris Sinica

基  金:华设设计集团股份有限公司开放基金(8503008464)。

摘  要:针对太阳能-土壤源热泵复合系统在水箱直接供暖模式下运行,存在热泵机组频繁启停以及供暖负荷分配不合理的问题,提出一种基于BP神经网络的动态供暖策略。以沈阳某建筑为对象,设计太阳能-土壤源热泵复合系统,通过TRNSYS和Matlab软件进行仿真。通过与常规水箱直接供暖策略对比,该策略能在典型供暖日中将机组的启停次数从9次减少为2次,机组COP从3.90提高至4.02。在供暖负荷较大的供暖季中期,平均每天提高机组COP 2.37%。Aiming at the problems of frequent shutdown and unreasonable heating load distribution when running direct heating mode using water tank in the solar-ground source heat pump composite system,a dynamic heating strategy based on BP neural network was proposed.Taking a building in Shenyang as an research object,a solar-ground source heat pump composite system was designed,and simulated by using TRNSYS and Matlab software.Compared with the traditional direct heating mode using water tank,this strategy can reduce the on/off number of the unit from 9 to 2,and increase the COP of the unit from 3.90 to 4.02 during a typical heating day.In the middle of heating season,the COP of the unit is increased by 2.37%on average per day.

关 键 词:地源热泵 太阳能 神经网络 供暖策略 

分 类 号:TK519[动力工程及工程热物理—热能工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象