检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张兴园 黄雅平[1] 邹琪[1] 裴艳婷 ZHANG Xing-Yuan;HUANG Ya-Ping;ZOU Qi;PEI Yan-Ting(School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044)
机构地区:[1]北京交通大学计算机与信息技术学院,北京100044
出 处:《自动化学报》2022年第9期2223-2232,共10页Acta Automatica Sinica
基 金:中央高校基本科研业务费专项资金(2020YJS046);北京市自然科学基金(M22022,L211015);中国博士后科学基金(2021M690339)资助。
摘 要:人类具有很强的草图识别能力.然而,由于草图具有稀疏性和缺少细节的特点,目前的深度学习模型在草图分类任务上仍然面临挑战.目前的工作只是将草图看作灰度图像而忽略了不同草图类别间的形状表示差异.提出一种端到端的手绘草图识别模型,简称双模型融合网络,它可以通过相互学习策略获取草图的纹理和形状信息.具体地,该模型由2个分支组成:一个分支能够从图像表示(即原始草图)中自动提取纹理特征,另一个分支能够从图形表示(即基于点的草图)中自动提取形状特征.此外,提出视觉注意一致性损失来度量2个分支之间视觉显著图的一致性,这样可以保证2个分支关注相同的判别性区域.最终将分类损失、类别一致性损失和视觉注意一致性损失结合完成双模型融合网络的优化.在两个具有挑战性的数据集TU-Berlin数据集和Sketchy数据集上进行草图分类实验,评估结果说明了双模型融合网络显著优于基准方法并达到最佳性能.Human has a strong ability to recognize hand-drawn sketches.However,state-of-the-art models on sketch classification tasks remain challenging due to the sparse lines and limited details of sketches.Previous deep neural networks treat sketches as general images and ignore the shape representations for different categories.In this paper,we aim to address the problem by an end-to-end hand-drawn sketch recognition model,named dualmodel fusion network,which can capture both texture and shape information of sketches via a mutual learning strategy.Specifically,our model is composed of two branches:one branch can automatically extract texture features from an image-based representation,i.e.,the raw sketches,and the other branch can obtain shape information from a graph-based representation,i.e.,point-based sketches.Moreover,we propose an attention consistency loss to measure the attention heat-map consistency between the two branches,which can simultaneously enable the same concentration of discriminative regions in the two representations.Finally,the proposed dual-model fusion network is optimized by combining classification loss,category consistency loss and attention consistency loss.We conduct extensive experiments on two challenging data sets,TU-Berlin and Sketchy,for sketch classification tasks.Our dual-model fusion network significantly outperforms baselines,and achieves the new state-of-the-art performance.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166