机构地区:[1]太原理工大学矿用智能电器技术国家地方联合工程实验室,山西太原030024 [2]太原理工大学煤矿电气设备与智能控制山西省重点实验室,山西太原030024 [3]晋能控股山西科学技术研究院有限公司(晋城)技术中心,山西晋城048000 [4]山西金鼎高宝钻探有限责任公司,山西晋城048000
出 处:《工矿自动化》2022年第9期140-147,156,共9页Journal Of Mine Automation
基 金:山西省重点研发计划项目(202003D111008);山西省“1331”工程项目(晋教科[2017]1 0号)。
摘 要:目前矿用千米定向钻机的行走、钻进等各项操作均由司钻工人手动操作实现,智能化水平低,且缺少对千米定向钻机动作类型与液压泵站振动状态二者关联性的研究,远程识别千米定向钻机动作类型困难。针对上述问题,提出了一种基于经验小波变换(EWT)和模糊C均值(FCM)聚类算法的矿用千米定向钻机动作识别方法。首先利用EWT方法分析千米定向钻机执行5种不同动作(千米定向钻机启动和动力头不带钻杆旋转、带钻杆旋转、带钻杆向前慢速钻进和带钻杆向前快速钻进)时液压泵站3个关键部位(电动机、液压泵和联轴器)的频率特征信息,分别选取每处振动特征最明显方向上的振动信号构成动作识别原信号组。然后结合EWT分解和相关系数选取规则提取动作识别原信号组中包含钻机动作信息的特征量,并确认不同特征量的权重,构建标准识别特征量。最后利用FCM聚类算法得到待识别动作特征量与5种动作识别标准特征量之间的隶属度,实现对千米定向钻机动作类型的智能识别。以ZYL-17000D型矿用千米定向钻机为研究对象,对基于EWT和FCM聚类算法的矿用千米定向钻机动作识别方法的可靠性进行实验验证,实验采集了电动机、液压泵、联轴器的轴向、水平径向、垂直径向等方向在5种动作下的振动数据,结果表明:钻机执行不同动作时,其电动机、液压泵和联轴器振动信号的经验小波函数表现出了不同的特征,其中液压泵轴向振动信号特征量的聚类性能最好,根据提取的特征量在不同动作下的差异性可实现对动作类型的识别。基于测试数据的动作识别结果表明,该方法能够有效识别千米定向钻机的动作类型,且在隶属度大于0.9的条件下,识别准确率达96.8%。At present, the walking and drilling operations of the mine kilometer directional drilling rig are all realized by the manual operation of drillers. The intelligence level is low. At present, there is no research on the correlation between the action type of kilometer directional drilling rig and the vibration state of the hydraulic pump station.Therefore,it is difficult to remotely identify the action type of the kilometer directional drilling rig.In order to solve the above problems,an action recognition method for mine kilometer directional drilling rig based on empirical wavelet transform (EWT) and fuzzy C-means (FCM) clustering algorithm is proposed.Firstly,the EWT method is used to analyze the frequency characteristic information of the three key parts (motor,hydraulic pump and coupling) of the hydraulic pump station when the kilometer directional drilling rig performs five different actions (the start of the kilometer directional drilling rig,the rotation of the power head without drill pipe,the rotation with drill pipe,the forward slow drilling with drill pipe and the forward fast drilling with drill pipe).The vibration signals in the most obvious direction of each vibration characteristic are selected to form the original signal group for action recognition.Secondly,the combination of EWT decomposition and correlation coefficient selection rules is used to extract eigenvectors containing drill action information in the original signal group for action recognition.The weight of different eigenvectors is confirmed.The standard recognition eigenvector is constructed.Finally,the membership degree between the action eigenvector to be identified and the five action recognition standard eigenvectors is obtained by using the FCM clustering algorithm.The intelligent recognition of the action types of the kilometer directional drilling rig is realized.Taking the ZYL-17000D type mine kilometer directional drilling rig as the research object,the reliability of the action recognition method based on EWT and FCM clust
关 键 词:矿用千米定向钻机 动作识别 带钻杆旋转 带钻杆钻进 振动信号 标准识别特征量 经验小波变换 模糊C均值聚类算法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...