A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants:Current status,challenges,and future prospects  被引量:12

在线阅读下载全文

作  者:Darothi Bairagi Sumantra Mandal 

机构地区:[1]Department of Metallurgical and Materials Engineering,Indian Institute of Technology,Kharagpur 721302,India

出  处:《Journal of Magnesium and Alloys》2022年第3期674-722,共49页镁合金学报(英文)

摘  要:Mg and its alloys are drawing huge attention since the last two decades as a viable option for temporary implants applications.A commendable progress has already been made in the development of these alloys.The biodegradable nature of Mg,appreciable biocompatibility of elemental Mg,and its close resemblance to natural bone in terms of density and elastic modulus make them highly preferable option amongst other available alternatives in this field.This review article presents an overview covering the recent advancements made in the field of Mg-based biodegradable implants for orthopaedic implant applications.The paper focuses on alloy development and fabrication techniques,the state of the art of important Mg-based alloy systems in terms of their mechanical properties,in-vitro and in-vivo degradation behaviour and cytotoxicity.Further,the paper reviews the current progress achieved in the clinical transition of Mg-based alloys for orthopaedic fixtures.The review also includes the degradation mechanisms of the alloys in physiological environment and highlights the mismatch existing between the rate of bone healing and alloy degradation due to rapid corrosion of the alloys in such environment,which has still restricted their widespread application.Finally,the surface coating techniques available for the alloys as an effective way to reduce the degradation rate are reviewed,followed by a discussion on the future research prospects.

关 键 词:Mg-based alloys BIOMATERIALS Temporary implants BIOCOMPATIBILITY Degradation behaviour orthopaedic fixtures. 

分 类 号:TG146.22[一般工业技术—材料科学与工程] R318.08[金属学及工艺—金属材料]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象