含非对称结构的机械振动系统非线性振动特性  被引量:2

Non-linear vibration characteristics of mechanical vibration system with asymmetric structure

在线阅读下载全文

作  者:刘德强[1] 尹凤伟[1] LIU De-qiang;YIN Feng-wei(Institute of Northeast Asia High Speed Rail,Jilin Railway Vocational and Technical College,Jilin 132200)

机构地区:[1]吉林铁道职业技术学院东北亚高铁学院,吉林吉林132200

出  处:《机械设计》2022年第8期100-108,共9页Journal of Machine Design

基  金:吉林省职业教育与成人教育教学改革研究项目(2020ZCZ021)。

摘  要:文中建立了带有多重间隙-弹性约束机械振动系统的力学模型。基于多参数耦合、多目标协同仿真,分析系统在激励频率和间隙阈值的双参数平面上的周期冲击振动模式类型、分布规律和分岔特征。采用变步长Runge-Kutta法进行数值计算,计算结果证明,带有相等间隙阈值的振动系统在低频域内周期冲击振动的模式类型的复杂性和多样性特征。此外,研究了相邻基本周期冲击振动相互转迁的不可逆性诱发的奇异点、迟滞转迁域和非迟滞转迁域,揭示了迟滞转迁域内的相邻基本冲击振动的共存现象和非迟滞转迁域内亚谐冲击振动的模式类型及规律特征,研究了带有不等间隙阈值的振动系统的动力学特性,分析了带有对称和非对称简谐力的振动系统的周期冲击振动的模式类型及涌现规律。该研究为开展含多重间隙-弹性约束的机械振动系统动态设计与协同优化提供科学的理论依据。In this article,the mechanical model of a mechanical vibration system with multiple gaps-elastic constraints is set up.The vibration mode types,distribution domains and bifurcation characteristics of periodic vibro-impact on a two-dimensional parametric plane with excitation frequency and gap threshold are analyzed by means of multi-parameter coupling and multi-objective co-simulation.The fourth-order variable step Runge-Kutta method is used for numerical calculation.The results show complexity and diversity of the mode types of periodic vibro-impact in the low frequency domain of a vibration system with equal gap threshold.The singularities,hysteretic and non-hysteretic transition domains induced by irreversibility of adjacent basic periodic vibro-impact transitions are explored.The coexistence of adjacent basic periodic vibro-impact within the hysteretic transition domain is revealed.The mode types and regular characteristics of sub-harmonic vibro-impact in the non-hysteretic transition domain are discussed.The dynamic characteristics of a vibration system with unequal gap thresholds are studied.The mode types and emergence rules of periodic periodic vibro-impact of a vibration system with symmetric and asymmetric simple harmonic forces are analyzed.This study provides scientific and theoretical basis for dynamic design and collaborative optimization of mechanical vibration systems with multiple gaps-elastic constraints.

关 键 词:冲击振动 约束 分岔 多样性 动力学特性 

分 类 号:O322[理学—一般力学与力学基础] TH113.1[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象